Smoothness via directional smoothness and Marchaud's theorem in Banach spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317845" target="_blank" >RIV/00216208:11320/15:10317845 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmaa.2014.09.068" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2014.09.068</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2014.09.068" target="_blank" >10.1016/j.jmaa.2014.09.068</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Smoothness via directional smoothness and Marchaud's theorem in Banach spaces
Popis výsledku v původním jazyce
Classical Marchaud's theorem (1927) asserts that if f is a bounded function on [a, b], k is an element of N, and the (k + 1)th modulus of smoothness w(k+1) (f; t) is so small that eta(t) = integral(t)(0) omega(k+1)(f;s)/s(k+1) ds < +infinity for t > 0, then f is an element of C-k ((a, b)) and f((k)) is uniformly continuous with modulus C eta for some c > 0 (i.e. in our terminology f is C-k,C-c eta-smooth). Using a known version of the converse of Taylor theorem we easily deduce Marchaud's theorem for functions on certain open connected subsets of Banach spaces from the classical one-dimensional version. In the case of a bounded subset of R-n our result is more general than that of H. Johnen and K. Scherer (1973), which was proved by quite a different method. We also prove that if a locally bounded mapping between Banach spaces is C-k,C-w-smooth on every line, then it is C-k,C-w-smooth for some c > 0.
Název v anglickém jazyce
Smoothness via directional smoothness and Marchaud's theorem in Banach spaces
Popis výsledku anglicky
Classical Marchaud's theorem (1927) asserts that if f is a bounded function on [a, b], k is an element of N, and the (k + 1)th modulus of smoothness w(k+1) (f; t) is so small that eta(t) = integral(t)(0) omega(k+1)(f;s)/s(k+1) ds < +infinity for t > 0, then f is an element of C-k ((a, b)) and f((k)) is uniformly continuous with modulus C eta for some c > 0 (i.e. in our terminology f is C-k,C-c eta-smooth). Using a known version of the converse of Taylor theorem we easily deduce Marchaud's theorem for functions on certain open connected subsets of Banach spaces from the classical one-dimensional version. In the case of a bounded subset of R-n our result is more general than that of H. Johnen and K. Scherer (1973), which was proved by quite a different method. We also prove that if a locally bounded mapping between Banach spaces is C-k,C-w-smooth on every line, then it is C-k,C-w-smooth for some c > 0.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Svazek periodika
423
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
594-607
Kód UT WoS článku
000349706000035
EID výsledku v databázi Scopus
2-s2.0-84923046355