Generalized probabilistic theories and conic extensions of polytopes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318082" target="_blank" >RIV/00216208:11320/15:10318082 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1751-8113/48/2/025302" target="_blank" >http://dx.doi.org/10.1088/1751-8113/48/2/025302</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/48/2/025302" target="_blank" >10.1088/1751-8113/48/2/025302</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized probabilistic theories and conic extensions of polytopes
Popis výsledku v původním jazyce
Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPTis equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in R-n, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by log n. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto theoriginal space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization o
Název v anglickém jazyce
Generalized probabilistic theories and conic extensions of polytopes
Popis výsledku anglicky
Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPTis equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in R-n, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by log n. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto theoriginal space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization o
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
000346414600010
EID výsledku v databázi Scopus
2-s2.0-84918503236