Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Traversing combinatorial 0/1-polytopes via optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476060" target="_blank" >RIV/00216208:11320/23:10476060 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/FOCS57990.2023.00076" target="_blank" >https://doi.org/10.1109/FOCS57990.2023.00076</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/FOCS57990.2023.00076" target="_blank" >10.1109/FOCS57990.2023.00076</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Traversing combinatorial 0/1-polytopes via optimization

  • Popis výsledku v původním jazyce

    In this paper, we present a new framework that exploits combinatorial optimization for efficiently generating a large variety of combinatorial objects based on graphs, matroids, posets and polytopes. Our method relies on a simple and versatile algorithm for computing a Hamilton path on the skeleton of any 0/1-polytope conv(X), where X is a subset of  {0,1}^n. The algorithm uses as a black box any algorithm that solves a variant of the classical linear optimization problem min {w . x ; x is from X}, and the resulting delay, i.e., the running time per visited vertex on the Hamilton path, is only by a factor of log n larger than the running time of the optimization algorithm. When X encodes a particular class of combinatorial objects, then traversing the skeleton of the polytope conv(X) along a Hamilton path corresponds to listing the combinatorial objects by local change operations, i.e., we obtain Gray code listings. As concrete results of our general framework, we obtain efficient algorithms for generating all (c-optimal) bases and independent sets in a matroid; (c-optimal) spanning trees, forests, matchings, maximum matchings, and c-optimal matchings in a general graph; vertex covers, minimum vertex covers, c-optimal vertex covers, stable sets, maximum stable sets and c-optimal stable sets in a bipartite graph; as well as antichains, maximum antichains, c-optimal antichains, and c-optimal ideals of a poset. Specifically, the delay and space required by these algorithms are polynomial in the size of the matroid ground set, graph, or poset, respectively. Furthermore, all of these listings correspond to Hamilton paths on the corresponding combinatorial polytopes, namely the base polytope, matching polytope, vertex cover polytope, stable set polytope, chain polytope and order polytope, respectively. As another corollary from our framework, we obtain an O(t_LP log n) delay algorithm for the vertex enumeration problem on 0/1-polytopes {x is is from R^n l A x &lt;= b}, where A is from R^{m x n} and b is from R^m, and t_LP is the time needed to solve the linear program min {w . x ; A x &lt;= b}. This improves upon the 25-year old O(t_LP n) delay algorithm due to Bussieck and Lübbecke.

  • Název v anglickém jazyce

    Traversing combinatorial 0/1-polytopes via optimization

  • Popis výsledku anglicky

    In this paper, we present a new framework that exploits combinatorial optimization for efficiently generating a large variety of combinatorial objects based on graphs, matroids, posets and polytopes. Our method relies on a simple and versatile algorithm for computing a Hamilton path on the skeleton of any 0/1-polytope conv(X), where X is a subset of  {0,1}^n. The algorithm uses as a black box any algorithm that solves a variant of the classical linear optimization problem min {w . x ; x is from X}, and the resulting delay, i.e., the running time per visited vertex on the Hamilton path, is only by a factor of log n larger than the running time of the optimization algorithm. When X encodes a particular class of combinatorial objects, then traversing the skeleton of the polytope conv(X) along a Hamilton path corresponds to listing the combinatorial objects by local change operations, i.e., we obtain Gray code listings. As concrete results of our general framework, we obtain efficient algorithms for generating all (c-optimal) bases and independent sets in a matroid; (c-optimal) spanning trees, forests, matchings, maximum matchings, and c-optimal matchings in a general graph; vertex covers, minimum vertex covers, c-optimal vertex covers, stable sets, maximum stable sets and c-optimal stable sets in a bipartite graph; as well as antichains, maximum antichains, c-optimal antichains, and c-optimal ideals of a poset. Specifically, the delay and space required by these algorithms are polynomial in the size of the matroid ground set, graph, or poset, respectively. Furthermore, all of these listings correspond to Hamilton paths on the corresponding combinatorial polytopes, namely the base polytope, matching polytope, vertex cover polytope, stable set polytope, chain polytope and order polytope, respectively. As another corollary from our framework, we obtain an O(t_LP log n) delay algorithm for the vertex enumeration problem on 0/1-polytopes {x is is from R^n l A x &lt;= b}, where A is from R^{m x n} and b is from R^m, and t_LP is the time needed to solve the linear program min {w . x ; A x &lt;= b}. This improves upon the 25-year old O(t_LP n) delay algorithm due to Bussieck and Lübbecke.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-15272S" target="_blank" >GA22-15272S: Principy kombinatorického generování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings - IEEE 64th Annual Symposium on Foundations of Computer Science, FOCS

  • ISBN

    979-8-3503-1894-4

  • ISSN

    2575-8454

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    1282-1291

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    Santa Cruz

  • Místo konání akce

    Santa Cruz, USA

  • Datum konání akce

    6. 11. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku