Combinatorial generation via permutation languages. II. Lattice congruences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435481" target="_blank" >RIV/00216208:11320/21:10435481 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Dc3ilISx04" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Dc3ilISx04</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-021-2186-1" target="_blank" >10.1007/s11856-021-2186-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combinatorial generation via permutation languages. II. Lattice congruences
Popis výsledku v původním jazyce
This paper deals with lattice congruences of the weak order on the symmetric group, and initiates the investigation of the cover graphs of the corresponding lattice quotients. These graphs also arise as the skeleta of the so-called quotientopes, a family of polytopes recently introduced by Pilaud and Santos [Bull. Lond. Math. Soc., 51:406-420, 2019], which generalize permutahedra, associahedra, hypercubes and several other polytopes. We prove that all of these graphs have a Hamilton path, which can be computed by a simple greedy algorithm. This is an application of our framework for exhaustively generating various classes of combinatorial objects by encoding them as permutations. We also characterize which of these graphs are vertex-transitive or regular via their arc diagrams, give corresponding precise and asymptotic counting results, and we determine their minimum and maximum degrees.
Název v anglickém jazyce
Combinatorial generation via permutation languages. II. Lattice congruences
Popis výsledku anglicky
This paper deals with lattice congruences of the weak order on the symmetric group, and initiates the investigation of the cover graphs of the corresponding lattice quotients. These graphs also arise as the skeleta of the so-called quotientopes, a family of polytopes recently introduced by Pilaud and Santos [Bull. Lond. Math. Soc., 51:406-420, 2019], which generalize permutahedra, associahedra, hypercubes and several other polytopes. We prove that all of these graphs have a Hamilton path, which can be computed by a simple greedy algorithm. This is an application of our framework for exhaustively generating various classes of combinatorial objects by encoding them as permutations. We also characterize which of these graphs are vertex-transitive or regular via their arc diagrams, give corresponding precise and asymptotic counting results, and we determine their minimum and maximum degrees.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-08554S" target="_blank" >GA19-08554S: Struktury a algoritmy ve velmi symetrických grafech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Svazek periodika
244
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IL - Stát Izrael
Počet stran výsledku
59
Strana od-do
359-417
Kód UT WoS článku
000687017400008
EID výsledku v databázi Scopus
2-s2.0-85113188157