Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combinatorial generation via permutation languages. II. Lattice congruences

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435481" target="_blank" >RIV/00216208:11320/21:10435481 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Dc3ilISx04" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Dc3ilISx04</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-021-2186-1" target="_blank" >10.1007/s11856-021-2186-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combinatorial generation via permutation languages. II. Lattice congruences

  • Popis výsledku v původním jazyce

    This paper deals with lattice congruences of the weak order on the symmetric group, and initiates the investigation of the cover graphs of the corresponding lattice quotients. These graphs also arise as the skeleta of the so-called quotientopes, a family of polytopes recently introduced by Pilaud and Santos [Bull. Lond. Math. Soc., 51:406-420, 2019], which generalize permutahedra, associahedra, hypercubes and several other polytopes. We prove that all of these graphs have a Hamilton path, which can be computed by a simple greedy algorithm. This is an application of our framework for exhaustively generating various classes of combinatorial objects by encoding them as permutations. We also characterize which of these graphs are vertex-transitive or regular via their arc diagrams, give corresponding precise and asymptotic counting results, and we determine their minimum and maximum degrees.

  • Název v anglickém jazyce

    Combinatorial generation via permutation languages. II. Lattice congruences

  • Popis výsledku anglicky

    This paper deals with lattice congruences of the weak order on the symmetric group, and initiates the investigation of the cover graphs of the corresponding lattice quotients. These graphs also arise as the skeleta of the so-called quotientopes, a family of polytopes recently introduced by Pilaud and Santos [Bull. Lond. Math. Soc., 51:406-420, 2019], which generalize permutahedra, associahedra, hypercubes and several other polytopes. We prove that all of these graphs have a Hamilton path, which can be computed by a simple greedy algorithm. This is an application of our framework for exhaustively generating various classes of combinatorial objects by encoding them as permutations. We also characterize which of these graphs are vertex-transitive or regular via their arc diagrams, give corresponding precise and asymptotic counting results, and we determine their minimum and maximum degrees.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-08554S" target="_blank" >GA19-08554S: Struktury a algoritmy ve velmi symetrických grafech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Svazek periodika

    244

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IL - Stát Izrael

  • Počet stran výsledku

    59

  • Strana od-do

    359-417

  • Kód UT WoS článku

    000687017400008

  • EID výsledku v databázi Scopus

    2-s2.0-85113188157