Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Flip Distances Between Graph Orientations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10435475" target="_blank" >RIV/00216208:11320/21:10435475 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p4Ljxf5xJ1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p4Ljxf5xJ1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00453-020-00751-1" target="_blank" >10.1007/s00453-020-00751-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Flip Distances Between Graph Orientations

  • Popis výsledku v původním jazyce

    Flip graphs are a ubiquitous class of graphs, which encode relations on a set of combinatorial objects by elementary, local changes. Skeletons of associahedra, for instance, are the graphs induced by quadrilateral flips in triangulations of a convex polygon. For some definition of a flip graph, a natural computational problem to consider is the flip distance: Given two objects, what is the minimum number of flips needed to transform one into the other? We consider flip graphs on orientations of simple graphs, where flips consist of reversing the direction of some edges. More precisely, we consider so-called α-orientations of a graph G, in which every vertex v has a specified outdegree α(v) , and a flip consists of reversing all edges of a directed cycle. We prove that deciding whether the flip distance between two α-orientations of a planar graph G is at most two is NP-complete. This also holds in the special case of perfect matchings, where flips involve alternating cycles. This problem amounts to finding geodesics on the common base polytope of two partition matroids, or, alternatively, on an alcoved polytope. It therefore provides an interesting example of a flip distance question that is computationally intractable despite having a natural interpretation as a geodesic on a nicely structured combinatorial polytope. We also consider the dual question of the flip distance between graph orientations in which every cycle has a specified number of forward edges, and a flip is the reversal of all edges in a minimal directed cut. In general, the problem remains hard. However, if we restrict to flips that only change sinks into sources, or vice-versa, then the problem can be solved in polynomial time. Here we exploit the fact that the flip graph is the cover graph of a distributive lattice. This generalizes a recent result from Zhang et al. (Acta Math Sin Engl Ser 35(4):569-576, 2019).

  • Název v anglickém jazyce

    Flip Distances Between Graph Orientations

  • Popis výsledku anglicky

    Flip graphs are a ubiquitous class of graphs, which encode relations on a set of combinatorial objects by elementary, local changes. Skeletons of associahedra, for instance, are the graphs induced by quadrilateral flips in triangulations of a convex polygon. For some definition of a flip graph, a natural computational problem to consider is the flip distance: Given two objects, what is the minimum number of flips needed to transform one into the other? We consider flip graphs on orientations of simple graphs, where flips consist of reversing the direction of some edges. More precisely, we consider so-called α-orientations of a graph G, in which every vertex v has a specified outdegree α(v) , and a flip consists of reversing all edges of a directed cycle. We prove that deciding whether the flip distance between two α-orientations of a planar graph G is at most two is NP-complete. This also holds in the special case of perfect matchings, where flips involve alternating cycles. This problem amounts to finding geodesics on the common base polytope of two partition matroids, or, alternatively, on an alcoved polytope. It therefore provides an interesting example of a flip distance question that is computationally intractable despite having a natural interpretation as a geodesic on a nicely structured combinatorial polytope. We also consider the dual question of the flip distance between graph orientations in which every cycle has a specified number of forward edges, and a flip is the reversal of all edges in a minimal directed cut. In general, the problem remains hard. However, if we restrict to flips that only change sinks into sources, or vice-versa, then the problem can be solved in polynomial time. Here we exploit the fact that the flip graph is the cover graph of a distributive lattice. This generalizes a recent result from Zhang et al. (Acta Math Sin Engl Ser 35(4):569-576, 2019).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-08554S" target="_blank" >GA19-08554S: Struktury a algoritmy ve velmi symetrických grafech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Algorithmica

  • ISSN

    0178-4617

  • e-ISSN

  • Svazek periodika

    83

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    28

  • Strana od-do

    116-143

  • Kód UT WoS článku

    000552959900001

  • EID výsledku v databázi Scopus

    2-s2.0-85088645770