Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rainbow cycles in flip graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419957" target="_blank" >RIV/00216208:11320/20:10419957 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=noYFAmtzud" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=noYFAmtzud</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/18M1216456" target="_blank" >10.1137/18M1216456</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rainbow cycles in flip graphs

  • Popis výsledku v původním jazyce

    The flip graph of triangulations has as vertices all triangulations of a convex n-gon and an edge between any two triangulations that differ in exactly one edge. An r-rainbow cycle in this graph is a cycle in which every inner edge of the triangulation appears exactly r times. This notion of a rainbow cycle extends in a natural way to other flip graphs. In this paper we investigate the existence of r-rainbow cycles for three different flip graphs on classes of geometric objects: the aforementioned flip graph of triangulations of a convex n-gon, the flip graph of plane trees on an arbitrary set of n points, and the flip graph of noncrossing perfect matchings on a set of n points in convex position. In addition, we consider two flip graphs on classes of nongeometric objects: the flip graph of permutations of {1, 2, ..., n} and the flip graph of k-element subsets of {1, 2, ..., n}. In each of the five settings, we prove the existence and nonexistence of rainbow cycles for different values of r, n, and k.

  • Název v anglickém jazyce

    Rainbow cycles in flip graphs

  • Popis výsledku anglicky

    The flip graph of triangulations has as vertices all triangulations of a convex n-gon and an edge between any two triangulations that differ in exactly one edge. An r-rainbow cycle in this graph is a cycle in which every inner edge of the triangulation appears exactly r times. This notion of a rainbow cycle extends in a natural way to other flip graphs. In this paper we investigate the existence of r-rainbow cycles for three different flip graphs on classes of geometric objects: the aforementioned flip graph of triangulations of a convex n-gon, the flip graph of plane trees on an arbitrary set of n points, and the flip graph of noncrossing perfect matchings on a set of n points in convex position. In addition, we consider two flip graphs on classes of nongeometric objects: the flip graph of permutations of {1, 2, ..., n} and the flip graph of k-element subsets of {1, 2, ..., n}. In each of the five settings, we prove the existence and nonexistence of rainbow cycles for different values of r, n, and k.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-08554S" target="_blank" >GA19-08554S: Struktury a algoritmy ve velmi symetrických grafech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    39

  • Strana od-do

    1-39

  • Kód UT WoS článku

    000546886700001

  • EID výsledku v databázi Scopus

    2-s2.0-85079770225