Zigzagging through acyclic orientations of chordal graphs and hypergraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476041" target="_blank" >RIV/00216208:11320/23:10476041 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/1.9781611977554.ch117" target="_blank" >https://doi.org/10.1137/1.9781611977554.ch117</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/1.9781611977554.ch117" target="_blank" >10.1137/1.9781611977554.ch117</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Zigzagging through acyclic orientations of chordal graphs and hypergraphs
Popis výsledku v původním jazyce
In 1993, Savage, Squire, and West described an inductive construction for generating every acyclic orientation of a chordal graph exactly once, flipping one arc at a time. We provide two generalizations of this result. Firstly, we describe Gray codes for acyclic orientations of hypergraphs that satisfy a simple ordering condition, which generalizes the notion of perfect elimination order of graphs. This unifies the Savage-Squire-West construction with a recent algorithm for generating elimination trees of chordal graphs (SODA 2022). Secondly, we consider quotients of lattices of acyclic orientations of chordal graphs, and we provide a Gray code for them, addressing a question raised by Pilaud (FPSAC 2022). This also generalizes a recent algorithm for generating lattice congruences of the weak order on the symmetric group (SODA 2020). Our algorithms are derived from the Hartung-Hoang-Mütze-Williams combinatorial generation framework, and they yield simple algorithms for computing Hamilton paths and cycles on large classes of polytopes, including chordal nestohedra and quotientopes. In particular, we derive an efficient implementation of the Savage-Squire-West construction. Along the way, we give an overview of old and recent results about the polyhedral and order-theoretic aspects of acyclic orientations of graphs and hypergraphs.
Název v anglickém jazyce
Zigzagging through acyclic orientations of chordal graphs and hypergraphs
Popis výsledku anglicky
In 1993, Savage, Squire, and West described an inductive construction for generating every acyclic orientation of a chordal graph exactly once, flipping one arc at a time. We provide two generalizations of this result. Firstly, we describe Gray codes for acyclic orientations of hypergraphs that satisfy a simple ordering condition, which generalizes the notion of perfect elimination order of graphs. This unifies the Savage-Squire-West construction with a recent algorithm for generating elimination trees of chordal graphs (SODA 2022). Secondly, we consider quotients of lattices of acyclic orientations of chordal graphs, and we provide a Gray code for them, addressing a question raised by Pilaud (FPSAC 2022). This also generalizes a recent algorithm for generating lattice congruences of the weak order on the symmetric group (SODA 2020). Our algorithms are derived from the Hartung-Hoang-Mütze-Williams combinatorial generation framework, and they yield simple algorithms for computing Hamilton paths and cycles on large classes of polytopes, including chordal nestohedra and quotientopes. In particular, we derive an efficient implementation of the Savage-Squire-West construction. Along the way, we give an overview of old and recent results about the polyhedral and order-theoretic aspects of acyclic orientations of graphs and hypergraphs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-15272S" target="_blank" >GA22-15272S: Principy kombinatorického generování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
ISBN
978-1-61197-755-4
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
3029-3042
Název nakladatele
Society for Industrial and Applied Mathematics
Místo vydání
Philadelphia, USA
Místo konání akce
Florenc, Italy
Datum konání akce
22. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—