Efficient generation of elimination trees and graph associahedra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10450766" target="_blank" >RIV/00216208:11320/22:10450766 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/1.9781611977073.84" target="_blank" >https://doi.org/10.1137/1.9781611977073.84</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/1.9781611977073.84" target="_blank" >10.1137/1.9781611977073.84</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient generation of elimination trees and graph associahedra
Popis výsledku v původním jazyce
An elimination tree for a connected graph G is a rooted tree on the vertices of G obtained by choosing a root x and recursing on the connected components of G x to produce the subtrees of x. Elimination trees appear in many guises in computer science and discrete mathematics, and they encode many interesting combinatorial objects, such as bitstrings, permutations and binary trees. We apply the recent Hartung-Hoang- Mütze-Williams combinatorial generation framework to elimination trees, and prove that all elimination trees for a chordal graph G can be generated by tree rotations using a simple greedy algorithm. This yields a short proof for the existence of Hamilton paths on graph associahedra of chordal graphs. Graph associahedra are a general class of high-dimensional polytopes introduced by Carr, Devadoss, and Postnikov, whose vertices correspond to elimination trees and whose edges correspond to tree rotations. As special cases of our results, we recover several classical Gray codes for bitstrings, permutations and binary trees, and we obtain a new Gray code for partial permutations. Our algorithm for generating all elimination trees for a chordal graph G can be implemented in time O(m + n) per generated elimination tree, where m and n are the number of edges and vertices of G, respectively. If G is a tree, we improve this to a loopless algorithm running in time O(1) per generated elimination tree. We also prove that our algorithm produces a Hamilton cycle on the graph associahedron of G, rather than just Hamilton path, if the graph G is chordal and 2-connected. Moreover, our algorithm characterizes chordality, i.e., it computes a Hamilton path on the graph associahedron of G if and only if G is chordal.
Název v anglickém jazyce
Efficient generation of elimination trees and graph associahedra
Popis výsledku anglicky
An elimination tree for a connected graph G is a rooted tree on the vertices of G obtained by choosing a root x and recursing on the connected components of G x to produce the subtrees of x. Elimination trees appear in many guises in computer science and discrete mathematics, and they encode many interesting combinatorial objects, such as bitstrings, permutations and binary trees. We apply the recent Hartung-Hoang- Mütze-Williams combinatorial generation framework to elimination trees, and prove that all elimination trees for a chordal graph G can be generated by tree rotations using a simple greedy algorithm. This yields a short proof for the existence of Hamilton paths on graph associahedra of chordal graphs. Graph associahedra are a general class of high-dimensional polytopes introduced by Carr, Devadoss, and Postnikov, whose vertices correspond to elimination trees and whose edges correspond to tree rotations. As special cases of our results, we recover several classical Gray codes for bitstrings, permutations and binary trees, and we obtain a new Gray code for partial permutations. Our algorithm for generating all elimination trees for a chordal graph G can be implemented in time O(m + n) per generated elimination tree, where m and n are the number of edges and vertices of G, respectively. If G is a tree, we improve this to a loopless algorithm running in time O(1) per generated elimination tree. We also prove that our algorithm produces a Hamilton cycle on the graph associahedron of G, rather than just Hamilton path, if the graph G is chordal and 2-connected. Moreover, our algorithm characterizes chordality, i.e., it computes a Hamilton path on the graph associahedron of G if and only if G is chordal.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-08554S" target="_blank" >GA19-08554S: Struktury a algoritmy ve velmi symetrických grafech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
ISBN
978-1-61197-707-3
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
2128-2140
Název nakladatele
Society for Industrial and Applied Mathematics
Místo vydání
Philadelphia, USA
Místo konání akce
Alexandria, Virgina, U.S.; Virtual
Datum konání akce
9. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—