Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient generation of elimination trees and graph associahedra

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10450766" target="_blank" >RIV/00216208:11320/22:10450766 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1137/1.9781611977073.84" target="_blank" >https://doi.org/10.1137/1.9781611977073.84</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/1.9781611977073.84" target="_blank" >10.1137/1.9781611977073.84</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient generation of elimination trees and graph associahedra

  • Popis výsledku v původním jazyce

    An elimination tree for a connected graph G is a rooted tree on the vertices of G obtained by choosing a root x and recursing on the connected components of G x to produce the subtrees of x. Elimination trees appear in many guises in computer science and discrete mathematics, and they encode many interesting combinatorial objects, such as bitstrings, permutations and binary trees. We apply the recent Hartung-Hoang- Mütze-Williams combinatorial generation framework to elimination trees, and prove that all elimination trees for a chordal graph G can be generated by tree rotations using a simple greedy algorithm. This yields a short proof for the existence of Hamilton paths on graph associahedra of chordal graphs. Graph associahedra are a general class of high-dimensional polytopes introduced by Carr, Devadoss, and Postnikov, whose vertices correspond to elimination trees and whose edges correspond to tree rotations. As special cases of our results, we recover several classical Gray codes for bitstrings, permutations and binary trees, and we obtain a new Gray code for partial permutations. Our algorithm for generating all elimination trees for a chordal graph G can be implemented in time O(m + n) per generated elimination tree, where m and n are the number of edges and vertices of G, respectively. If G is a tree, we improve this to a loopless algorithm running in time O(1) per generated elimination tree. We also prove that our algorithm produces a Hamilton cycle on the graph associahedron of G, rather than just Hamilton path, if the graph G is chordal and 2-connected. Moreover, our algorithm characterizes chordality, i.e., it computes a Hamilton path on the graph associahedron of G if and only if G is chordal.

  • Název v anglickém jazyce

    Efficient generation of elimination trees and graph associahedra

  • Popis výsledku anglicky

    An elimination tree for a connected graph G is a rooted tree on the vertices of G obtained by choosing a root x and recursing on the connected components of G x to produce the subtrees of x. Elimination trees appear in many guises in computer science and discrete mathematics, and they encode many interesting combinatorial objects, such as bitstrings, permutations and binary trees. We apply the recent Hartung-Hoang- Mütze-Williams combinatorial generation framework to elimination trees, and prove that all elimination trees for a chordal graph G can be generated by tree rotations using a simple greedy algorithm. This yields a short proof for the existence of Hamilton paths on graph associahedra of chordal graphs. Graph associahedra are a general class of high-dimensional polytopes introduced by Carr, Devadoss, and Postnikov, whose vertices correspond to elimination trees and whose edges correspond to tree rotations. As special cases of our results, we recover several classical Gray codes for bitstrings, permutations and binary trees, and we obtain a new Gray code for partial permutations. Our algorithm for generating all elimination trees for a chordal graph G can be implemented in time O(m + n) per generated elimination tree, where m and n are the number of edges and vertices of G, respectively. If G is a tree, we improve this to a loopless algorithm running in time O(1) per generated elimination tree. We also prove that our algorithm produces a Hamilton cycle on the graph associahedron of G, rather than just Hamilton path, if the graph G is chordal and 2-connected. Moreover, our algorithm characterizes chordality, i.e., it computes a Hamilton path on the graph associahedron of G if and only if G is chordal.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-08554S" target="_blank" >GA19-08554S: Struktury a algoritmy ve velmi symetrických grafech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)

  • ISBN

    978-1-61197-707-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    2128-2140

  • Název nakladatele

    Society for Industrial and Applied Mathematics

  • Místo vydání

    Philadelphia, USA

  • Místo konání akce

    Alexandria, Virgina, U.S.; Virtual

  • Datum konání akce

    9. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku