Understanding Transparent and Complicated Users as Instances of Preference Learning for Recommender Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10319658" target="_blank" >RIV/00216208:11320/16:10319658 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Understanding Transparent and Complicated Users as Instances of Preference Learning for Recommender Systems
Popis výsledku v původním jazyce
In this paper we are concerned with user understanding in content based recommendation. We assume having explicit ratings with time-stamps from each user. We integrate three different movie data sets, trying to avoid features specific for single data and try to be more generic. We use several metrics which were not used so far in the recommender systems domain. Besides classical rating approximation with RMSE and ratio of order agreement we study new metrics for predicting Next-k and (at least) 1-hit at Next-k. Using these Next-k and 1-hit we try to model display of our recommendation - we can display k objects and hope to achieve at least one hit. We trace performance of our methods and metrics also as a distribution along each single user. We define transparent and complicated users with respect to number of methods which achieved at least one hit. We provide results of experiments with several combinations of methods, data sets and metrics along these three axes.
Název v anglickém jazyce
Understanding Transparent and Complicated Users as Instances of Preference Learning for Recommender Systems
Popis výsledku anglicky
In this paper we are concerned with user understanding in content based recommendation. We assume having explicit ratings with time-stamps from each user. We integrate three different movie data sets, trying to avoid features specific for single data and try to be more generic. We use several metrics which were not used so far in the recommender systems domain. Besides classical rating approximation with RMSE and ratio of order agreement we study new metrics for predicting Next-k and (at least) 1-hit at Next-k. Using these Next-k and 1-hit we try to model display of our recommendation - we can display k objects and hope to achieve at least one hit. We trace performance of our methods and metrics also as a distribution along each single user. We define transparent and complicated users with respect to number of methods which achieved at least one hit. We provide results of experiments with several combinations of methods, data sets and metrics along these three axes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-19877S" target="_blank" >GA15-19877S: Automatické modelování znalostí a plánů pro autonomní roboty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical and Engineering Methods in Computer Science
ISBN
978-3-319-29816-0
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
23-34
Název nakladatele
Springer
Místo vydání
Berlín
Místo konání akce
Telč
Datum konání akce
23. 10. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—