Fixed interval scheduling under uncertainty - A tabu search algorithm for an extended robust coloring formulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10323558" target="_blank" >RIV/00216208:11320/16:10323558 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/16:PU140549
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cie.2015.12.021" target="_blank" >http://dx.doi.org/10.1016/j.cie.2015.12.021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cie.2015.12.021" target="_blank" >10.1016/j.cie.2015.12.021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fixed interval scheduling under uncertainty - A tabu search algorithm for an extended robust coloring formulation
Popis výsledku v původním jazyce
We propose several formulations of the fixed interval scheduling problem under uncertainty, where the risk is represented by random delays in processing times. We employ various stochastic programming and robust coloring problems to deal with the uncertainty. Our main goal is to introduce equivalent deterministic reformulations of the stochastic programming problems. We show that the minimization of the expected number of overlaps is equivalent to the deterministic robust coloring problem under particular choice of the penalties. Moreover, we extend the robust coloring problem to obtain equivalence with the stochastic programming problem with the schedule reliability objective under multivariate distribution of delays represented by an Archimedean copula. We show that small simulated instances of this problem can be solved to optimality by available software tools and we propose a tabu search algorithm suitable for larger instances.
Název v anglickém jazyce
Fixed interval scheduling under uncertainty - A tabu search algorithm for an extended robust coloring formulation
Popis výsledku anglicky
We propose several formulations of the fixed interval scheduling problem under uncertainty, where the risk is represented by random delays in processing times. We employ various stochastic programming and robust coloring problems to deal with the uncertainty. Our main goal is to introduce equivalent deterministic reformulations of the stochastic programming problems. We show that the minimization of the expected number of overlaps is equivalent to the deterministic robust coloring problem under particular choice of the penalties. Moreover, we extend the robust coloring problem to obtain equivalence with the stochastic programming problem with the schedule reliability objective under multivariate distribution of delays represented by an Archimedean copula. We show that small simulated instances of this problem can be solved to optimality by available software tools and we propose a tabu search algorithm suitable for larger instances.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Industrial Engineering
ISSN
0360-8352
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
45-54
Kód UT WoS článku
000371844900005
EID výsledku v databázi Scopus
2-s2.0-84953897685