Flow-based formulations for operational fixed interval scheduling problems with random delays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10363665" target="_blank" >RIV/00216208:11320/17:10363665 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10287-016-0262-5" target="_blank" >http://dx.doi.org/10.1007/s10287-016-0262-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10287-016-0262-5" target="_blank" >10.1007/s10287-016-0262-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flow-based formulations for operational fixed interval scheduling problems with random delays
Popis výsledku v původním jazyce
We deal with operational fixed interval scheduling problem with random delays in job processing times. We formulate two stochastic programming problems. In the first problem with a probabilistic objective, all jobs are processed on available machines and the goal is to obtain a schedule with the highest attainable reliability. The second problem is to select a subset of jobs with the highest reward under a chance constraint ensuring feasibility of the schedule with a prescribed probability. We assume that the multivariate distribution of delays follows an Archimedean copula, whereas there are no restrictions on marginal distributions. We introduce new deterministic integer linear reformulations based on flow problems. We compare the formulations with the extended robust coloring problem, which was shown to be a deterministic equivalent to the stochastic programming problem with probabilistic objective by Branda et al. (Comput Ind Eng 93: 45-54, 2016). In the numerical study, we report average computational times necessary to solve a large number of simulated instances. It turns out that the new flow-based formulation helps to solve the FIS problems considerably faster than the other one.
Název v anglickém jazyce
Flow-based formulations for operational fixed interval scheduling problems with random delays
Popis výsledku anglicky
We deal with operational fixed interval scheduling problem with random delays in job processing times. We formulate two stochastic programming problems. In the first problem with a probabilistic objective, all jobs are processed on available machines and the goal is to obtain a schedule with the highest attainable reliability. The second problem is to select a subset of jobs with the highest reward under a chance constraint ensuring feasibility of the schedule with a prescribed probability. We assume that the multivariate distribution of delays follows an Archimedean copula, whereas there are no restrictions on marginal distributions. We introduce new deterministic integer linear reformulations based on flow problems. We compare the formulations with the extended robust coloring problem, which was shown to be a deterministic equivalent to the stochastic programming problem with probabilistic objective by Branda et al. (Comput Ind Eng 93: 45-54, 2016). In the numerical study, we report average computational times necessary to solve a large number of simulated instances. It turns out that the new flow-based formulation helps to solve the FIS problems considerably faster than the other one.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Management Science
ISSN
1619-697X
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
161-177
Kód UT WoS článku
000411375200009
EID výsledku v databázi Scopus
2-s2.0-84982149343