Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Untangling two systems of noncrossing curves

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10328975" target="_blank" >RIV/00216208:11320/16:10328975 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s11856-016-1294-9" target="_blank" >http://dx.doi.org/10.1007/s11856-016-1294-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-016-1294-9" target="_blank" >10.1007/s11856-016-1294-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Untangling two systems of noncrossing curves

  • Popis výsledku v původním jazyce

    We consider two systems (alpha(1), ... ,alpha(m)) and (beta(1), ... , beta(n)) of simple curves drawn on a compact two-dimensional surface M with boundary. Each alpha(i) and each beta(j) is either an arc meeting the boundary of M at its two endpoints, or a closed curve. The a, are pairwise disjoint except for possibly sharing endpoints, and similarly for the beta(j). We want to "untangle" the beta(j) from the alpha(i) by a self-homeomorphism of M; more precisely, we seek a homeomorphism phi: M -> M fixing the boundary of M pointwise such that the total number of crossings of the a, with the phi(beta(j)) is as small as possible. This problem is motivated by an application in the algorithmic theory of embeddings and 3 -manifolds. We prove that if M is planar, i.e., a sphere with h >= 0 boundary components ("holes"), then O(mn) crossings can be achieved (independently of h), which is asymptotically tight, as an easy lower bound shows. In general, for an arbitrary (orientable or nonorientable) surface M with h holes and of (orientable or nonorientable) genus g >= 0, we obtain an O((m + n)(4)) upper bound, again independent of h and g. The proofs rely, among other things, on a result concerning simultaneous planar drawings of graphs by Erten and Kobourov.

  • Název v anglickém jazyce

    Untangling two systems of noncrossing curves

  • Popis výsledku anglicky

    We consider two systems (alpha(1), ... ,alpha(m)) and (beta(1), ... , beta(n)) of simple curves drawn on a compact two-dimensional surface M with boundary. Each alpha(i) and each beta(j) is either an arc meeting the boundary of M at its two endpoints, or a closed curve. The a, are pairwise disjoint except for possibly sharing endpoints, and similarly for the beta(j). We want to "untangle" the beta(j) from the alpha(i) by a self-homeomorphism of M; more precisely, we seek a homeomorphism phi: M -> M fixing the boundary of M pointwise such that the total number of crossings of the a, with the phi(beta(j)) is as small as possible. This problem is motivated by an application in the algorithmic theory of embeddings and 3 -manifolds. We prove that if M is planar, i.e., a sphere with h >= 0 boundary components ("holes"), then O(mn) crossings can be achieved (independently of h), which is asymptotically tight, as an easy lower bound shows. In general, for an arbitrary (orientable or nonorientable) surface M with h holes and of (orientable or nonorientable) genus g >= 0, we obtain an O((m + n)(4)) upper bound, again independent of h and g. The proofs rely, among other things, on a result concerning simultaneous planar drawings of graphs by Erten and Kobourov.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Kreslení grafů a jejich geometrické reprezentace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Svazek periodika

    212

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IL - Stát Izrael

  • Počet stran výsledku

    43

  • Strana od-do

    37-79

  • Kód UT WoS článku

    000377265600002

  • EID výsledku v databázi Scopus

    2-s2.0-84971014023