Fixed Points of Set Functors: How Many Iterations are Needed?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10329041" target="_blank" >RIV/00216208:11320/16:10329041 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/16:00302998
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10485-016-9451-1" target="_blank" >http://dx.doi.org/10.1007/s10485-016-9451-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10485-016-9451-1" target="_blank" >10.1007/s10485-016-9451-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fixed Points of Set Functors: How Many Iterations are Needed?
Popis výsledku v původním jazyce
The initial algebra for a set functor can be constructed iteratively via a well-known transfinite chain, which converges after a regular infinite cardinal number of steps or at most three steps. We extend this result to the analogous construction of relatively initial algebras. For the dual construction of the terminal coalgebra Worrell proved that if a set functor is alpha-accessible, then convergence takes at most alpha + alpha steps. But until now an example demonstrating that fewer steps may be insufficient was missing. We prove that the functor of all alpha-small filters is such an example. We further prove that for beta aecurrency sign alpha the functor of all alpha-small beta-generated filters requires precisely alpha + beta steps and that a certain modified power-set functor requires precisely alpha steps. We also present an example showing that whether a terminal coalgebra exists at all does not depend solely on the object mapping of the given set functor. (This contrasts with the fact that existence of an initial algebra is equivalent to existence of a mere fixed point.).
Název v anglickém jazyce
Fixed Points of Set Functors: How Many Iterations are Needed?
Popis výsledku anglicky
The initial algebra for a set functor can be constructed iteratively via a well-known transfinite chain, which converges after a regular infinite cardinal number of steps or at most three steps. We extend this result to the analogous construction of relatively initial algebras. For the dual construction of the terminal coalgebra Worrell proved that if a set functor is alpha-accessible, then convergence takes at most alpha + alpha steps. But until now an example demonstrating that fewer steps may be insufficient was missing. We prove that the functor of all alpha-small filters is such an example. We further prove that for beta aecurrency sign alpha the functor of all alpha-small beta-generated filters requires precisely alpha + beta steps and that a certain modified power-set functor requires precisely alpha steps. We also present an example showing that whether a terminal coalgebra exists at all does not depend solely on the object mapping of the given set functor. (This contrasts with the fact that existence of an initial algebra is equivalent to existence of a mere fixed point.).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
649-661
Kód UT WoS článku
000383603000015
EID výsledku v databázi Scopus
2-s2.0-84983542777