Fast and cheap approximation of Green function uncertainty for waveform-based earthquake source inversions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331062" target="_blank" >RIV/00216208:11320/16:10331062 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1093/gji/ggw320" target="_blank" >http://dx.doi.org/10.1093/gji/ggw320</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/gji/ggw320" target="_blank" >10.1093/gji/ggw320</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast and cheap approximation of Green function uncertainty for waveform-based earthquake source inversions
Popis výsledku v původním jazyce
Green functions (GFs) are an essential ingredient in waveform-based earthquake source inversions. Hence, the error due to imprecise knowledge of a crustal velocity model is one of the major sources of uncertainty of the inferred earthquake source parameters. Recent strategies in Bayesian waveform inversions rely on statistical description of the GF uncertainty by means of a Gaussian distribution characterized by a covariance matrix. Here we use Monte-Carlo approach to estimate the GF covariance considering randomly perturbed velocity models. We analyse the dependence of the covariance on various parameters (strength of velocity model perturbations, GF frequency content, source-station distance, etc.). Recognizing that the major source of the GF uncertainty is related to the random time shifts of the signal, we propose a simplified approach to obtain approximate covariances, bypassing the numerically expensive Monte-Carlo simulations. The resulting closed-form formulae for the approximate auto-covariances and cross-covariances between stations and components can be easily implemented in existing inversion techniques. We demonstrate that the approximate covariances exhibit very good agreement with the Monte-Carlo estimates, providing realistic variations of the GF waveforms. Furthermore, we show examples of implementation of the covariance matrix in a Bayesian moment tensor inversion using both synthetic and real data sets. We demonstrate that taking the GF uncertainty into account leads to improved estimates of the moment tensor parameters and their uncertainty.
Název v anglickém jazyce
Fast and cheap approximation of Green function uncertainty for waveform-based earthquake source inversions
Popis výsledku anglicky
Green functions (GFs) are an essential ingredient in waveform-based earthquake source inversions. Hence, the error due to imprecise knowledge of a crustal velocity model is one of the major sources of uncertainty of the inferred earthquake source parameters. Recent strategies in Bayesian waveform inversions rely on statistical description of the GF uncertainty by means of a Gaussian distribution characterized by a covariance matrix. Here we use Monte-Carlo approach to estimate the GF covariance considering randomly perturbed velocity models. We analyse the dependence of the covariance on various parameters (strength of velocity model perturbations, GF frequency content, source-station distance, etc.). Recognizing that the major source of the GF uncertainty is related to the random time shifts of the signal, we propose a simplified approach to obtain approximate covariances, bypassing the numerically expensive Monte-Carlo simulations. The resulting closed-form formulae for the approximate auto-covariances and cross-covariances between stations and components can be easily implemented in existing inversion techniques. We demonstrate that the approximate covariances exhibit very good agreement with the Monte-Carlo estimates, providing realistic variations of the GF waveforms. Furthermore, we show examples of implementation of the covariance matrix in a Bayesian moment tensor inversion using both synthetic and real data sets. We demonstrate that taking the GF uncertainty into account leads to improved estimates of the moment tensor parameters and their uncertainty.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DC - Seismologie, vulkanologie a struktura Země
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geophysical Journal International
ISSN
0956-540X
e-ISSN
—
Svazek periodika
207
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
1012-1029
Kód UT WoS článku
000386453200024
EID výsledku v databázi Scopus
2-s2.0-84994759312