Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bayesian Self-Adapting Fault Slip Inversion With Green's Functions Uncertainty and Application on the 2016 M(w)7.1 Kumamoto Earthquake

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421011" target="_blank" >RIV/00216208:11320/20:10421011 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=egPX8xSK9Q" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=egPX8xSK9Q</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2019JB018703" target="_blank" >10.1029/2019JB018703</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bayesian Self-Adapting Fault Slip Inversion With Green's Functions Uncertainty and Application on the 2016 M(w)7.1 Kumamoto Earthquake

  • Popis výsledku v původním jazyce

    Kinematic finite-extent models of earthquake sources can be determined by inverse modeling of observed waveforms and/or geodetic data. Such models are subject to significant uncertainty as a result of inaccurate observations and imperfect physical description of the complex properties of the Earth&apos;s crust. For slip inversions of large earthquakes, the major source of uncertainty is related to the uncertainty of Green&apos;s functions due to the imperfect description of the crustal model and selected parameterization of the source model. To account for both, we introduce an effective nonlinear Bayesian slip inversion with transdimensional source parameterization, including analytical representation of uncertainties of Green&apos;s functions. Our nonlinear slip inversion method relies on a self-adapting spatial parametrization of the slip distribution by means of a varying number of spline control points on the assumed fault. For the temporal parameterization, it utilizes the regularized Yoffe function with spatially varying rise time and rupture velocity. Rake angle is also treated as an unknown spatially dependent parameter. The Green&apos;s function uncertainties are included using full covariance matrices. The posterior probability density function is sampled by the transdimensional Markov chain Monte Carlo algorithm with parallel tempering. The performance of our slip inversion method is demonstrated on a synthetic test from the Source Inversion Validation project and real-data inversion of the 2016 M(w)7.1 Kumamoto earthquake. In the latter test, we infer an ensemble of similar to 7,300,000 possible rupture models, representing samples of the posterior probability density, and inspect which features of these models are reliable and which are rather artifacts.

  • Název v anglickém jazyce

    Bayesian Self-Adapting Fault Slip Inversion With Green's Functions Uncertainty and Application on the 2016 M(w)7.1 Kumamoto Earthquake

  • Popis výsledku anglicky

    Kinematic finite-extent models of earthquake sources can be determined by inverse modeling of observed waveforms and/or geodetic data. Such models are subject to significant uncertainty as a result of inaccurate observations and imperfect physical description of the complex properties of the Earth&apos;s crust. For slip inversions of large earthquakes, the major source of uncertainty is related to the uncertainty of Green&apos;s functions due to the imperfect description of the crustal model and selected parameterization of the source model. To account for both, we introduce an effective nonlinear Bayesian slip inversion with transdimensional source parameterization, including analytical representation of uncertainties of Green&apos;s functions. Our nonlinear slip inversion method relies on a self-adapting spatial parametrization of the slip distribution by means of a varying number of spline control points on the assumed fault. For the temporal parameterization, it utilizes the regularized Yoffe function with spatially varying rise time and rupture velocity. Rake angle is also treated as an unknown spatially dependent parameter. The Green&apos;s function uncertainties are included using full covariance matrices. The posterior probability density function is sampled by the transdimensional Markov chain Monte Carlo algorithm with parallel tempering. The performance of our slip inversion method is demonstrated on a synthetic test from the Source Inversion Validation project and real-data inversion of the 2016 M(w)7.1 Kumamoto earthquake. In the latter test, we infer an ensemble of similar to 7,300,000 possible rupture models, representing samples of the posterior probability density, and inspect which features of these models are reliable and which are rather artifacts.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC18-06716J" target="_blank" >GC18-06716J: BAIES - Bayesovská analýza parametrů zemětřesení: kinematické a dynamické modely zdroje konečných rozměrů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Geophysical Research: Solid Earth

  • ISSN

    2169-9313

  • e-ISSN

  • Svazek periodika

    125

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    32

  • Strana od-do

    e2019JB018703

  • Kód UT WoS článku

    000530895800032

  • EID výsledku v databázi Scopus

    2-s2.0-85082322425