Bayesian Dynamic Finite-Fault Inversion: 1. Method and Synthetic Test
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404670" target="_blank" >RIV/00216208:11320/19:10404670 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=D_SsahIcyd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=D_SsahIcyd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2019JB017510" target="_blank" >10.1029/2019JB017510</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian Dynamic Finite-Fault Inversion: 1. Method and Synthetic Test
Popis výsledku v původním jazyce
Dynamic earthquake source inversions aim to determine the spatial distribution of initial stress and friction parameters leading to dynamic rupture models that reproduce observed ground motion data. Such inversions are challenging, particularly due to their high computational burden; thus, so far, only few attempts have been made. Using a highly efficient rupture simulation code, we introduce a novel method to generate a representative sample of acceptable dynamic models from which dynamic source parameters and their uncertainties can be assessed. The method assumes a linear slip-weakening friction law and spatially variable prestress, strength, and characteristic slip-weakening distance along the fault. The inverse problem is formulated in a Bayesian framework, and the posterior probability density function is sampled using the Parallel Tempering Monte Carlo algorithm. The forward solver combines a 3-D finite difference code for dynamic rupture simulation on a simplified geometry to compute slip rates and precalculated Green's functions to compute ground motions. We demonstrate the performance of the proposed method on a community benchmark test for source inversion. We find that the dynamic parameters are resolved well within the uncertainty, especially in areas of large slip. The overall relative uncertainty of the dynamic parameters is rather large, reaching similar to 50% of the averaged values. In contrast, the kinematic rupture parameters (rupture times, rise times, and slip values), also well resolved, have relatively lower uncertainties of similar to 10%. We conclude that incorporating physics-based constraints, such as an adequate friction law, may serve also as an effective constraint on the rupture kinematics in finite-fault inversions.
Název v anglickém jazyce
Bayesian Dynamic Finite-Fault Inversion: 1. Method and Synthetic Test
Popis výsledku anglicky
Dynamic earthquake source inversions aim to determine the spatial distribution of initial stress and friction parameters leading to dynamic rupture models that reproduce observed ground motion data. Such inversions are challenging, particularly due to their high computational burden; thus, so far, only few attempts have been made. Using a highly efficient rupture simulation code, we introduce a novel method to generate a representative sample of acceptable dynamic models from which dynamic source parameters and their uncertainties can be assessed. The method assumes a linear slip-weakening friction law and spatially variable prestress, strength, and characteristic slip-weakening distance along the fault. The inverse problem is formulated in a Bayesian framework, and the posterior probability density function is sampled using the Parallel Tempering Monte Carlo algorithm. The forward solver combines a 3-D finite difference code for dynamic rupture simulation on a simplified geometry to compute slip rates and precalculated Green's functions to compute ground motions. We demonstrate the performance of the proposed method on a community benchmark test for source inversion. We find that the dynamic parameters are resolved well within the uncertainty, especially in areas of large slip. The overall relative uncertainty of the dynamic parameters is rather large, reaching similar to 50% of the averaged values. In contrast, the kinematic rupture parameters (rupture times, rise times, and slip values), also well resolved, have relatively lower uncertainties of similar to 10%. We conclude that incorporating physics-based constraints, such as an adequate friction law, may serve also as an effective constraint on the rupture kinematics in finite-fault inversions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GC18-06716J" target="_blank" >GC18-06716J: BAIES - Bayesovská analýza parametrů zemětřesení: kinematické a dynamické modely zdroje konečných rozměrů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research: Solid Earth
ISSN
2169-9313
e-ISSN
—
Svazek periodika
124
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
6949-6969
Kód UT WoS článku
000481819500041
EID výsledku v databázi Scopus
2-s2.0-85069931485