Online Packet Scheduling with Bounded Delay and Lookahead
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331740" target="_blank" >RIV/00216208:11320/16:10331740 - isvavai.cz</a>
Výsledek na webu
<a href="http://drops.dagstuhl.de/opus/volltexte/2016/6790/" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2016/6790/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.21" target="_blank" >10.4230/LIPIcs.ISAAC.2016.21</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online Packet Scheduling with Bounded Delay and Lookahead
Popis výsledku v původním jazyce
We study the online bounded-delay packet scheduling problem (PacketScheduling), where packets of unit size arrive at a router over time and need to be transmitted over a network link. Each packet has two attributes: a non-negative weight and a deadline for its transmission. The objective is to maximize the total weight of the transmitted packets. This problem has been well studied in the literature, yet its optimal competitive ratio remains unknown: the best upper bound is 1.828 [Englert and Westermann, SODA 2007], still quite far from the best lower bound of phi, approx. 1.618 [Hajek, CISS 2001; Andelman et al, SODA 2003; Chin and Fung, Algorithmica, 2003]. In the variant of PacketScheduling with s-bounded instances, each packet can be scheduled in at most s consecutive slots, starting at its release time. The lower bound of phi applies even to the special case of 2-bounded instances, and a phi-competitive algorithm for 3-bounded instances was given in [Chin et al, JDA, 2006]. Improving that result, and addressing a question posed by Goldwasser [SIGACT News, 2010], we present a phi-competitive algorithm for 4-bounded instances. We also study a variant of PacketScheduling where an online algorithm has the additional power of 1-lookahead, knowing at time t which packets will arrive at time t+1. For PacketScheduling with 1-lookahead restricted to 2-bounded instances, we present an online algorithm with competitive ratio (sqrt(13) - 1)/2 approx. 1.303 and we prove a nearly tight lower bound of (1 + sqrt(17))/4 approx. 1.281.
Název v anglickém jazyce
Online Packet Scheduling with Bounded Delay and Lookahead
Popis výsledku anglicky
We study the online bounded-delay packet scheduling problem (PacketScheduling), where packets of unit size arrive at a router over time and need to be transmitted over a network link. Each packet has two attributes: a non-negative weight and a deadline for its transmission. The objective is to maximize the total weight of the transmitted packets. This problem has been well studied in the literature, yet its optimal competitive ratio remains unknown: the best upper bound is 1.828 [Englert and Westermann, SODA 2007], still quite far from the best lower bound of phi, approx. 1.618 [Hajek, CISS 2001; Andelman et al, SODA 2003; Chin and Fung, Algorithmica, 2003]. In the variant of PacketScheduling with s-bounded instances, each packet can be scheduled in at most s consecutive slots, starting at its release time. The lower bound of phi applies even to the special case of 2-bounded instances, and a phi-competitive algorithm for 3-bounded instances was given in [Chin et al, JDA, 2006]. Improving that result, and addressing a question posed by Goldwasser [SIGACT News, 2010], we present a phi-competitive algorithm for 4-bounded instances. We also study a variant of PacketScheduling where an online algorithm has the additional power of 1-lookahead, knowing at time t which packets will arrive at time t+1. For PacketScheduling with 1-lookahead restricted to 2-bounded instances, we present an online algorithm with competitive ratio (sqrt(13) - 1)/2 approx. 1.303 and we prove a nearly tight lower bound of (1 + sqrt(17))/4 approx. 1.281.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-10003S" target="_blank" >GA14-10003S: Omezené typy výpočtů: algoritmy, modely, složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
27th International Symposium on Algorithms and Computation (ISAAC 2016)
ISBN
978-3-95977-026-2
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
13
Strana od-do
1-13
Název nakladatele
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl, Německo
Místo konání akce
Sydney
Datum konání akce
12. 12. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—