On the Classes of Interval Graphs of Limited Nesting and Count of Lengths
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332310" target="_blank" >RIV/00216208:11320/16:10332310 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.45" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.45</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.45" target="_blank" >10.4230/LIPIcs.ISAAC.2016.45</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Classes of Interval Graphs of Limited Nesting and Count of Lengths
Popis výsledku v původním jazyce
In 1969, Roberts introduced proper and unit interval graphs and proved that these classes are equal. Natural generalizations of unit interval graphs called k-length interval graphs were considered in which the number of different lengths of intervals is limited by k. Even after decades of research, no insight into their structure is known and the complexity of recognition is open even for k = 2. We propose generalizations of proper interval graphs called k-nested interval graphs in which there are no chains of k + 1 intervals nested in each other. It is easy to see that k-nested interval graphs are a superclass of k-length interval graphs. We give a linear-time recognition algorithm for k-nested interval graphs. This algorithm adds a missing piece to Gajarský et al. [FOCS 2015] to show that testing FO properties on interval graphs is FPT with respect to the nesting k and the length of the formula, while the problem is W[2]-hard when parameterized just by the length of the formula. Further, we show that a generalization of recognition called partial representation extension is polynomial-time solvable for k-nested interval graphs, while it is NP-hard for k-length interval graphs, even when k = 2.
Název v anglickém jazyce
On the Classes of Interval Graphs of Limited Nesting and Count of Lengths
Popis výsledku anglicky
In 1969, Roberts introduced proper and unit interval graphs and proved that these classes are equal. Natural generalizations of unit interval graphs called k-length interval graphs were considered in which the number of different lengths of intervals is limited by k. Even after decades of research, no insight into their structure is known and the complexity of recognition is open even for k = 2. We propose generalizations of proper interval graphs called k-nested interval graphs in which there are no chains of k + 1 intervals nested in each other. It is easy to see that k-nested interval graphs are a superclass of k-length interval graphs. We give a linear-time recognition algorithm for k-nested interval graphs. This algorithm adds a missing piece to Gajarský et al. [FOCS 2015] to show that testing FO properties on interval graphs is FPT with respect to the nesting k and the length of the formula, while the problem is W[2]-hard when parameterized just by the length of the formula. Further, we show that a generalization of recognition called partial representation extension is polynomial-time solvable for k-nested interval graphs, while it is NP-hard for k-length interval graphs, even when k = 2.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
27th International Symposium on Algorithms and Computation (ISAAC 2016)
ISBN
978-3-95977-026-2
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
13
Strana od-do
1-13
Název nakladatele
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Sydney
Datum konání akce
12. 12. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—