Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332642" target="_blank" >RIV/00216208:11320/16:10332642 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.scopus.com/inward/record.url?eid=2-s2.0-84959368591&partnerID=MN8TOARS" target="_blank" >http://www.scopus.com/inward/record.url?eid=2-s2.0-84959368591&partnerID=MN8TOARS</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range

  • Popis výsledku v původním jazyce

    THE RESPONSE OF MANY NEW METALLIC ALLOYS as well as ordinary materials such as concrete is elastic and nonlinear even in the small strain range. Thus, using the classical linearized theory to determine the response of bodies could lead to a miscalculation of the stresses corresponding to the given strains, even in the small strain regime. As stresses can determine the failure of structural members, such miscalculation could be critical. We investigate the quantitative impact of the material nonlinearity in the Euler-Bernoulli type beam theory. The governing equations for the deflection are found to be nonlinear integro-differential equations, and the equations are solved numerically using a variant of the spectral collocation method. The deflection and the spatial stress distribution in the beam have been computed for two sets of models, namely the standard linearized model and some recent nonlinear models used in the literature to fit experimental data. The predictions concerning the deflection and the spatial stress distribution based on the standard linearized model and the nonlinear models are considerably different.

  • Název v anglickém jazyce

    Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range

  • Popis výsledku anglicky

    THE RESPONSE OF MANY NEW METALLIC ALLOYS as well as ordinary materials such as concrete is elastic and nonlinear even in the small strain range. Thus, using the classical linearized theory to determine the response of bodies could lead to a miscalculation of the stresses corresponding to the given strains, even in the small strain regime. As stresses can determine the failure of structural members, such miscalculation could be critical. We investigate the quantitative impact of the material nonlinearity in the Euler-Bernoulli type beam theory. The governing equations for the deflection are found to be nonlinear integro-differential equations, and the equations are solved numerically using a variant of the spectral collocation method. The deflection and the spatial stress distribution in the beam have been computed for two sets of models, namely the standard linearized model and some recent nonlinear models used in the literature to fit experimental data. The predictions concerning the deflection and the spatial stress distribution based on the standard linearized model and the nonlinear models are considerably different.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Archives of Mechanics

  • ISSN

    0373-2029

  • e-ISSN

  • Svazek periodika

    68

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    23

  • Strana od-do

    3-25

  • Kód UT WoS článku

    000372097000001

  • EID výsledku v databázi Scopus

    2-s2.0-84959368591