Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10332642" target="_blank" >RIV/00216208:11320/16:10332642 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.scopus.com/inward/record.url?eid=2-s2.0-84959368591&partnerID=MN8TOARS" target="_blank" >http://www.scopus.com/inward/record.url?eid=2-s2.0-84959368591&partnerID=MN8TOARS</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range
Popis výsledku v původním jazyce
THE RESPONSE OF MANY NEW METALLIC ALLOYS as well as ordinary materials such as concrete is elastic and nonlinear even in the small strain range. Thus, using the classical linearized theory to determine the response of bodies could lead to a miscalculation of the stresses corresponding to the given strains, even in the small strain regime. As stresses can determine the failure of structural members, such miscalculation could be critical. We investigate the quantitative impact of the material nonlinearity in the Euler-Bernoulli type beam theory. The governing equations for the deflection are found to be nonlinear integro-differential equations, and the equations are solved numerically using a variant of the spectral collocation method. The deflection and the spatial stress distribution in the beam have been computed for two sets of models, namely the standard linearized model and some recent nonlinear models used in the literature to fit experimental data. The predictions concerning the deflection and the spatial stress distribution based on the standard linearized model and the nonlinear models are considerably different.
Název v anglickém jazyce
Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range
Popis výsledku anglicky
THE RESPONSE OF MANY NEW METALLIC ALLOYS as well as ordinary materials such as concrete is elastic and nonlinear even in the small strain range. Thus, using the classical linearized theory to determine the response of bodies could lead to a miscalculation of the stresses corresponding to the given strains, even in the small strain regime. As stresses can determine the failure of structural members, such miscalculation could be critical. We investigate the quantitative impact of the material nonlinearity in the Euler-Bernoulli type beam theory. The governing equations for the deflection are found to be nonlinear integro-differential equations, and the equations are solved numerically using a variant of the spectral collocation method. The deflection and the spatial stress distribution in the beam have been computed for two sets of models, namely the standard linearized model and some recent nonlinear models used in the literature to fit experimental data. The predictions concerning the deflection and the spatial stress distribution based on the standard linearized model and the nonlinear models are considerably different.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archives of Mechanics
ISSN
0373-2029
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
23
Strana od-do
3-25
Kód UT WoS článku
000372097000001
EID výsledku v databázi Scopus
2-s2.0-84959368591