Strongly polynomial sequences as interpretations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333125" target="_blank" >RIV/00216208:11320/16:10333125 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jal.2016.06.001" target="_blank" >http://dx.doi.org/10.1016/j.jal.2016.06.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jal.2016.06.001" target="_blank" >10.1016/j.jal.2016.06.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strongly polynomial sequences as interpretations
Popis výsledku v původním jazyce
A strongly polynomial sequence of graphs (G(n)) is a sequence (G(n))(n is an element of N) of finite graphs such that, for every graph F, the number of homomorphisms from F to G(n) is a fixed polynomial function of n (depending on F). For example, (K-n) is strongly polynomial since the number of homomorphisms from F to K-n is the chromatic polynomial of F evaluated at n. In earlier work of de la Harpe and Jaeger, and more recently of Averbouch, Garijo, Godlin, Goodall, Makowsky, Nesetril, Tittmann, Zilber and others, various examples of strongly polynomial sequences and constructions for families of such sequences have been found, leading to analogues of the chromatic polynomial for fractional colourings and acyclic colourings, to choose two interesting examples. We give a new model-theoretic method of constructing strongly polynomial sequences of graphs that uses interpretation schemes of graphs in more general relational structures. This surprisingly easy yet general method encompasses all previous constructions and produces many more. We conjecture that, under mild assumptions, all strongly polynomial sequences of graphs can be produced by the general method of quantifier-free interpretation of graphs in certain basic relational structures (essentially disjoint unions of transitive tournaments with added unary relations). We verify this conjecture for strongly polynomial sequences of graphs with uniformly bounded degree.
Název v anglickém jazyce
Strongly polynomial sequences as interpretations
Popis výsledku anglicky
A strongly polynomial sequence of graphs (G(n)) is a sequence (G(n))(n is an element of N) of finite graphs such that, for every graph F, the number of homomorphisms from F to G(n) is a fixed polynomial function of n (depending on F). For example, (K-n) is strongly polynomial since the number of homomorphisms from F to K-n is the chromatic polynomial of F evaluated at n. In earlier work of de la Harpe and Jaeger, and more recently of Averbouch, Garijo, Godlin, Goodall, Makowsky, Nesetril, Tittmann, Zilber and others, various examples of strongly polynomial sequences and constructions for families of such sequences have been found, leading to analogues of the chromatic polynomial for fractional colourings and acyclic colourings, to choose two interesting examples. We give a new model-theoretic method of constructing strongly polynomial sequences of graphs that uses interpretation schemes of graphs in more general relational structures. This surprisingly easy yet general method encompasses all previous constructions and produces many more. We conjecture that, under mild assumptions, all strongly polynomial sequences of graphs can be produced by the general method of quantifier-free interpretation of graphs in certain basic relational structures (essentially disjoint unions of transitive tournaments with added unary relations). We verify this conjecture for strongly polynomial sequences of graphs with uniformly bounded degree.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Logic
ISSN
1570-8683
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
129-149
Kód UT WoS článku
000384954600006
EID výsledku v databázi Scopus
2-s2.0-84988423230