Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modeling limits in hereditary classes: Reduction and application to trees

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10333127" target="_blank" >RIV/00216208:11320/16:10333127 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i2p52" target="_blank" >http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i2p52</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modeling limits in hereditary classes: Reduction and application to trees

  • Popis výsledku v původním jazyce

    The study of limits of graphs led to elegant limit structures for sparse and dense graphs. This has been unified and generalized by the authors in a more general setting combining analytic tools and model theory to FO-limits (and X-limits) and to the notion of modeling. The existence of modeling limits was established for sequences in a bounded degree class and, in addition, to the case of classes of trees with bounded height and of graphs with bounded tree depth. The natural obstacle for the existence of modeling limit for a monotone class of graphs is the nowhere dense property and it has been conjectured that this is a sufficient condition. Extending earlier results here we derive several general results which present a realistic approach to this conjecture. As an example we then prove that the class of all finite trees admits modeling limits.

  • Název v anglickém jazyce

    Modeling limits in hereditary classes: Reduction and application to trees

  • Popis výsledku anglicky

    The study of limits of graphs led to elegant limit structures for sparse and dense graphs. This has been unified and generalized by the authors in a more general setting combining analytic tools and model theory to FO-limits (and X-limits) and to the notion of modeling. The existence of modeling limits was established for sequences in a bounded degree class and, in addition, to the case of classes of trees with bounded height and of graphs with bounded tree depth. The natural obstacle for the existence of modeling limit for a monotone class of graphs is the nowhere dense property and it has been conjectured that this is a sufficient condition. Extending earlier results here we derive several general results which present a realistic approach to this conjecture. As an example we then prove that the class of all finite trees admits modeling limits.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronic Journal of Combinatorics

  • ISSN

    1077-8926

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    33

  • Strana od-do

    1-33

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-84976262150