Stabilization of Small Platinum Nanoparticles on Pt-CeO2 Thin Film Electrocatalysts During Methanol Oxidation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10334285" target="_blank" >RIV/00216208:11320/16:10334285 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9nN7ED-lEc" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9nN7ED-lEc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.6b05962" target="_blank" >10.1021/acs.jpcc.6b05962</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stabilization of Small Platinum Nanoparticles on Pt-CeO2 Thin Film Electrocatalysts During Methanol Oxidation
Popis výsledku v původním jazyce
Pt-doped CeOx thin film electrocatalysts have recently been shown to exhibit high activity and stability at the anode of proton exchange membrane fuel cells (PEM-FC). To identify, the role of the Pt dopant and the origin of the high stability of Pt-CeOx films, we applied electrochemical in situ IR spectroscopy on Pt-CeOx model thin film catalysts during methanol (1 M methanol) oxidation. The model catalysts were prepared by magnetron cosputtering of Pt (9-21 atom %), and CeO2 onto clean, and carbon-coated Au supports, All samples were characterized by scanning electron microscopy (SEM), energy-dispersive, X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) before and after reaction. At pH 1 (0.1 MHClO4) the Pt-CeOx dissolves partially during potential cycling, whereas the films: are largely stable at pH 6 (0.1 M phosphate buffer). Electrochemical IR spectroscopy of the adsorbed CO shows that Metallic Pt is formed on all Pt-CeOx samples during methanol oxidation. In comparison to Pt(111), Pt aggregates on Pt-CeOx show a CO on-top signal, which is red shifted by at least 25 cm(-1) and suppression of the bridging CO signals. Whereas the Pt particles on Pt-CeOx,films with high Pt concentration (>20 atom %) undergo rapid sintering during the potential cycling, small metallic Pt aggregates are stable under the Same conditions on films with lbw Pt concentration (<15 atom % Pt). By means of density functional theory (DFT) calculations we analyzed the spectral shifts of adsorbed CO as a function of nanoparticle size both on free and ceria-supported Pt particles, Comparison with the experiment suggests the formation of "subnano"-particles, i.e., particles with up to 30 atoms (<1 nm particle diameter), which do not expose regular (111) facet sites. At sufficiently low Pt loading) these subnano-Pt particles are efficiently stabilized by the interaction with the ceria support under conditions of the dynamically changing electrode potential.
Název v anglickém jazyce
Stabilization of Small Platinum Nanoparticles on Pt-CeO2 Thin Film Electrocatalysts During Methanol Oxidation
Popis výsledku anglicky
Pt-doped CeOx thin film electrocatalysts have recently been shown to exhibit high activity and stability at the anode of proton exchange membrane fuel cells (PEM-FC). To identify, the role of the Pt dopant and the origin of the high stability of Pt-CeOx films, we applied electrochemical in situ IR spectroscopy on Pt-CeOx model thin film catalysts during methanol (1 M methanol) oxidation. The model catalysts were prepared by magnetron cosputtering of Pt (9-21 atom %), and CeO2 onto clean, and carbon-coated Au supports, All samples were characterized by scanning electron microscopy (SEM), energy-dispersive, X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) before and after reaction. At pH 1 (0.1 MHClO4) the Pt-CeOx dissolves partially during potential cycling, whereas the films: are largely stable at pH 6 (0.1 M phosphate buffer). Electrochemical IR spectroscopy of the adsorbed CO shows that Metallic Pt is formed on all Pt-CeOx samples during methanol oxidation. In comparison to Pt(111), Pt aggregates on Pt-CeOx show a CO on-top signal, which is red shifted by at least 25 cm(-1) and suppression of the bridging CO signals. Whereas the Pt particles on Pt-CeOx,films with high Pt concentration (>20 atom %) undergo rapid sintering during the potential cycling, small metallic Pt aggregates are stable under the Same conditions on films with lbw Pt concentration (<15 atom % Pt). By means of density functional theory (DFT) calculations we analyzed the spectral shifts of adsorbed CO as a function of nanoparticle size both on free and ceria-supported Pt particles, Comparison with the experiment suggests the formation of "subnano"-particles, i.e., particles with up to 30 atoms (<1 nm particle diameter), which do not expose regular (111) facet sites. At sufficiently low Pt loading) these subnano-Pt particles are efficiently stabilized by the interaction with the ceria support under conditions of the dynamically changing electrode potential.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
—
Svazek periodika
120
Číslo periodika v rámci svazku
35
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
19723-19736
Kód UT WoS článku
000383004700026
EID výsledku v databázi Scopus
2-s2.0-84977609810