Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dissipative weak solutions to compressible Navier-Stokes-Fokker-Planck systems with variable viscosity coefficients

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10334342" target="_blank" >RIV/00216208:11320/16:10334342 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.jmaa.2016.05.030" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.05.030</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2016.05.030" target="_blank" >10.1016/j.jmaa.2016.05.030</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dissipative weak solutions to compressible Navier-Stokes-Fokker-Planck systems with variable viscosity coefficients

  • Popis výsledku v původním jazyce

    Motivated by a recent paper by Barrett and Suli (2016) [6], we consider the compressible Navier-Stokes system coupled with a Fokker-Planck type equation describing the motion of polymer molecules in a viscous compressible fluid occupying a bounded spatial domain, with polymer-number-density-dependent viscosity coefficients. The model arises in the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids, where the polymer molecules are idealized as bead-spring chains with finitely extensible nonlinear elastic (FENE) type spring potentials. The motion of the solvent is governed by the unsteady, compressible, barotropic Navier-Stokes system, where the viscosity coefficients in the Newtonian stress tensor depend on the polymer number density. Our goal is to show that the existence theory developed in the case of constant viscosity coefficients can be extended to the case of polymer-number-density-dependent viscosities, provided that certain technical restrictions are imposed, relating the behavior of the viscosity coefficients and the pressure for large values of the solvent density. As a first step in this direction, we prove here the weak sequential stability of the family of dissipative (finite-energy) weak solutions to the system.

  • Název v anglickém jazyce

    Dissipative weak solutions to compressible Navier-Stokes-Fokker-Planck systems with variable viscosity coefficients

  • Popis výsledku anglicky

    Motivated by a recent paper by Barrett and Suli (2016) [6], we consider the compressible Navier-Stokes system coupled with a Fokker-Planck type equation describing the motion of polymer molecules in a viscous compressible fluid occupying a bounded spatial domain, with polymer-number-density-dependent viscosity coefficients. The model arises in the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids, where the polymer molecules are idealized as bead-spring chains with finitely extensible nonlinear elastic (FENE) type spring potentials. The motion of the solvent is governed by the unsteady, compressible, barotropic Navier-Stokes system, where the viscosity coefficients in the Newtonian stress tensor depend on the polymer number density. Our goal is to show that the existence theory developed in the case of constant viscosity coefficients can be extended to the case of polymer-number-density-dependent viscosities, provided that certain technical restrictions are imposed, relating the behavior of the viscosity coefficients and the pressure for large values of the solvent density. As a first step in this direction, we prove here the weak sequential stability of the family of dissipative (finite-energy) weak solutions to the system.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Svazek periodika

    443

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

    322-351

  • Kód UT WoS článku

    000378301400017

  • EID výsledku v databázi Scopus

    2-s2.0-84973915386