Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10334915" target="_blank" >RIV/00216208:11320/16:10334915 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1137/15M1013146" target="_blank" >http://dx.doi.org/10.1137/15M1013146</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/15M1013146" target="_blank" >10.1137/15M1013146</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY

  • Popis výsledku v původním jazyce

    A new mixed variational formulation for the Navier-Stokes equations with constant density and variable viscosity depending nonlinearly on the gradient of velocity, is proposed and analyzed here. Our approach employs a technique previously applied to the stationary Boussinesq problem and to the Navier-Stokes equations with constant viscosity, which consists firstly of the introduction of a modified pseudostress tensor involving the diffusive and convective terms, and the pressure. Next, by using an equivalent statement suggested by the incompressibility condition, the pressure is eliminated, and in order to handle the nonlinear viscosity, the gradient of velocity is incorporated as an auxiliary unknown. Furthermore, since the convective term forces the velocity to live in a smaller space than usual, we overcome this difficulty by augmenting the variational formulation with suitable Galerkin-type terms arising from the constitutive and equilibrium equations, the aforementioned relation defining the additional unknown, and the Dirichlet boundary condition. The resulting augmented scheme is then written equivalently as a fixed point equation, and hence the well-known Schauder and Banach theorems, combined with classical results on bijective monotone operators, are applied to prove the unique solvability of the continuous and discrete systems. No discrete inf-sup conditions are required for the well-posedness of the Galerkin scheme, and hence arbitrary finite element subspaces of the respective continuous spaces can be utilized. In particular, given an integer k >= 0, piecewise polynomials of degree <= k for the gradient of velocity, Raviart-Thomas spaces of order k for the pseudostress, and continuous piecewise polynomials of degree <= k+1 for the velocity, constitute feasible choices.

  • Název v anglickém jazyce

    AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY

  • Popis výsledku anglicky

    A new mixed variational formulation for the Navier-Stokes equations with constant density and variable viscosity depending nonlinearly on the gradient of velocity, is proposed and analyzed here. Our approach employs a technique previously applied to the stationary Boussinesq problem and to the Navier-Stokes equations with constant viscosity, which consists firstly of the introduction of a modified pseudostress tensor involving the diffusive and convective terms, and the pressure. Next, by using an equivalent statement suggested by the incompressibility condition, the pressure is eliminated, and in order to handle the nonlinear viscosity, the gradient of velocity is incorporated as an auxiliary unknown. Furthermore, since the convective term forces the velocity to live in a smaller space than usual, we overcome this difficulty by augmenting the variational formulation with suitable Galerkin-type terms arising from the constitutive and equilibrium equations, the aforementioned relation defining the additional unknown, and the Dirichlet boundary condition. The resulting augmented scheme is then written equivalently as a fixed point equation, and hence the well-known Schauder and Banach theorems, combined with classical results on bijective monotone operators, are applied to prove the unique solvability of the continuous and discrete systems. No discrete inf-sup conditions are required for the well-posedness of the Galerkin scheme, and hence arbitrary finite element subspaces of the respective continuous spaces can be utilized. In particular, given an integer k >= 0, piecewise polynomials of degree <= k for the gradient of velocity, Raviart-Thomas spaces of order k for the pseudostress, and continuous piecewise polynomials of degree <= k+1 for the velocity, constitute feasible choices.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Numerical Analysis

  • ISSN

    0036-1429

  • e-ISSN

  • Svazek periodika

    54

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

    1069-1092

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-84970939115