Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ANALYSIS OF AN AUGMENTED MIXED-FEM FOR THE NAVIER-STOKES PROBLEM

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371178" target="_blank" >RIV/00216208:11320/17:10371178 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1090/mcom/3124" target="_blank" >http://dx.doi.org/10.1090/mcom/3124</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/mcom/3124" target="_blank" >10.1090/mcom/3124</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ANALYSIS OF AN AUGMENTED MIXED-FEM FOR THE NAVIER-STOKES PROBLEM

  • Popis výsledku v původním jazyce

    In this paper we propose and analyze a new augmented mixed finite element method for the Navier-Stokes problem. Our approach is based on the introduction of a &quot;nonlinear-pseudostress&quot; tensor linking the pseudostress tensor with the convective term, which leads to a mixed formulation with the nonlinear-pseudostress tensor and the velocity as the main unknowns of the system. Further variables of interest, such as the fluid pressure, the fluid vorticity and the fluid velocity gradient, can be easily approximated as a simple postprocess of the finite element solutions with the same rate of convergence. The resulting mixed formulation is augmented by introducing Galerkin least-squares type terms arising from the constitutive and equilibrium equations of the Navier-Stokes equations and from the Dirichlet boundary condition, which are multiplied by stabilization parameters that are chosen in such a way that the resulting continuous formulation becomes well-posed. Then, the classical Banach fixed point theorem and the Lax-Milgram lemma are applied to prove well-posedness of the continuous problem. Similarly, we establish well-posedness and the corresponding Cea estimate of the associated Galerkin scheme considering any conforming finite element subspace for each unknown. In particular, the associated Galerkin scheme can be defined by employing Raviart-Thomas elements of degree k for the nonlinear-pseudostress tensor and continuous piecewise polynomial elements of degree k + 1 for the velocity, which leads to an optimal convergent scheme. In addition, we provide two iterative methods to solve the corresponding nonlinear system of equations and analyze their convergence. Finally, several numerical results illustrating the good performance of the method are provided.

  • Název v anglickém jazyce

    ANALYSIS OF AN AUGMENTED MIXED-FEM FOR THE NAVIER-STOKES PROBLEM

  • Popis výsledku anglicky

    In this paper we propose and analyze a new augmented mixed finite element method for the Navier-Stokes problem. Our approach is based on the introduction of a &quot;nonlinear-pseudostress&quot; tensor linking the pseudostress tensor with the convective term, which leads to a mixed formulation with the nonlinear-pseudostress tensor and the velocity as the main unknowns of the system. Further variables of interest, such as the fluid pressure, the fluid vorticity and the fluid velocity gradient, can be easily approximated as a simple postprocess of the finite element solutions with the same rate of convergence. The resulting mixed formulation is augmented by introducing Galerkin least-squares type terms arising from the constitutive and equilibrium equations of the Navier-Stokes equations and from the Dirichlet boundary condition, which are multiplied by stabilization parameters that are chosen in such a way that the resulting continuous formulation becomes well-posed. Then, the classical Banach fixed point theorem and the Lax-Milgram lemma are applied to prove well-posedness of the continuous problem. Similarly, we establish well-posedness and the corresponding Cea estimate of the associated Galerkin scheme considering any conforming finite element subspace for each unknown. In particular, the associated Galerkin scheme can be defined by employing Raviart-Thomas elements of degree k for the nonlinear-pseudostress tensor and continuous piecewise polynomial elements of degree k + 1 for the velocity, which leads to an optimal convergent scheme. In addition, we provide two iterative methods to solve the corresponding nonlinear system of equations and analyze their convergence. Finally, several numerical results illustrating the good performance of the method are provided.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics of Computation

  • ISSN

    0025-5718

  • e-ISSN

  • Svazek periodika

    86

  • Číslo periodika v rámci svazku

    304

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    589-615

  • Kód UT WoS článku

    000391546700004

  • EID výsledku v databázi Scopus

    2-s2.0-85008462126