Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10335660" target="_blank" >RIV/00216208:11320/16:10335660 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevD.94.104010" target="_blank" >http://dx.doi.org/10.1103/PhysRevD.94.104010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.94.104010" target="_blank" >10.1103/PhysRevD.94.104010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes
Popis výsledku v původním jazyce
We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary condition (SSC), the Pirani SSC, and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of Damour and Nagar [Phys. Rev. D 90, 044018 (2014).]. We analyze the four different dynamics in terms of the innermost stable circular orbit (ISCO) shifts and in terms of the coordinate-invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational-wave fluxes produced by the spinning body are computed by solving the inhomogeneous (2 + 1)D Teukolsky equation and contrasted for the different cases. For small orbital frequencies Omega, all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, x = (M Omega)(2/3) > 0.1, where M is the black hole mass, and especially for positive spins (aligned with the orbital angular momentum) a significant disagreement between the different dynamics is observed. The ISCO shifts can differ by up to a factor of 2 for large positive spins; for the Ohashi-Kyrian-Semerak and the Pirani SSC the ISCO diverges around dimensionless spins similar to 0.52 and similar to 0.94, respectively. In the spin-orbit part of the energetics the deviation from the Hamiltonian dynamics is largest for the Ohashi-Kyrian-Semerak SSC; it exceeds 10% for x > 0.17. The Tulczyjew and the Pirani SSCs are compatible across almost the whole spin and frequency range. Our results will have direct applications in including spin effects in effective-one-body waveform models for circularized binaries in the extreme-mass-ratio limit.
Název v anglickém jazyce
Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes
Popis výsledku anglicky
We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary condition (SSC), the Pirani SSC, and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of Damour and Nagar [Phys. Rev. D 90, 044018 (2014).]. We analyze the four different dynamics in terms of the innermost stable circular orbit (ISCO) shifts and in terms of the coordinate-invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational-wave fluxes produced by the spinning body are computed by solving the inhomogeneous (2 + 1)D Teukolsky equation and contrasted for the different cases. For small orbital frequencies Omega, all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, x = (M Omega)(2/3) > 0.1, where M is the black hole mass, and especially for positive spins (aligned with the orbital angular momentum) a significant disagreement between the different dynamics is observed. The ISCO shifts can differ by up to a factor of 2 for large positive spins; for the Ohashi-Kyrian-Semerak and the Pirani SSC the ISCO diverges around dimensionless spins similar to 0.52 and similar to 0.94, respectively. In the spin-orbit part of the energetics the deviation from the Hamiltonian dynamics is largest for the Ohashi-Kyrian-Semerak SSC; it exceeds 10% for x > 0.17. The Tulczyjew and the Pirani SSCs are compatible across almost the whole spin and frequency range. Our results will have direct applications in including spin effects in effective-one-body waveform models for circularized binaries in the extreme-mass-ratio limit.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-10625S" target="_blank" >GA14-10625S: Obecně relativistická pole kompaktních astrofyzikálních zdrojů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW D
ISSN
2470-0010
e-ISSN
—
Svazek periodika
94
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
000386897500002
EID výsledku v databázi Scopus
2-s2.0-84994676897