Multidimensional stochastic dominance for discrete uniform distribution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10384629" target="_blank" >RIV/00216208:11320/16:10384629 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multidimensional stochastic dominance for discrete uniform distribution
Popis výsledku v původním jazyce
Stochastic dominance is a form of stochastic ordering, which stems from decision theory when one gamble can be ranked as superior to another one for a broad class of decision makers whose utility functions, representing preferences, have very general form. There exists extensive theory concerning one dimensional stochastic dominance of different orders. However it is not obvious how to extend the concept to multiple dimension which is especially crucial when utilizing multidimensional non separable utility functions. One possible approach is to transform multidimensional random vector to one dimensional random variable and put equivalent stochastic dominance in multiple dimension to stochastic dominance of transformed vectors in one dimension. We suggest more general framework which does not require reduction of dimensions of random vectors. We introduce two types of stochastic dominance and seek for their generators in terms of von Neumann -Morgenstern utility functions. Moreover, we develop necessary and sufficient conditions for stochastic dominance between two discrete random vectors with uniform distribution.
Název v anglickém jazyce
Multidimensional stochastic dominance for discrete uniform distribution
Popis výsledku anglicky
Stochastic dominance is a form of stochastic ordering, which stems from decision theory when one gamble can be ranked as superior to another one for a broad class of decision makers whose utility functions, representing preferences, have very general form. There exists extensive theory concerning one dimensional stochastic dominance of different orders. However it is not obvious how to extend the concept to multiple dimension which is especially crucial when utilizing multidimensional non separable utility functions. One possible approach is to transform multidimensional random vector to one dimensional random variable and put equivalent stochastic dominance in multiple dimension to stochastic dominance of transformed vectors in one dimension. We suggest more general framework which does not require reduction of dimensions of random vectors. We introduce two types of stochastic dominance and seek for their generators in terms of von Neumann -Morgenstern utility functions. Moreover, we develop necessary and sufficient conditions for stochastic dominance between two discrete random vectors with uniform distribution.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016)
ISBN
978-80-7494-296-9
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
675-680
Název nakladatele
TECHNICAL UNIVERSITY LIBEREC
Místo vydání
LIBEREC
Místo konání akce
Liberec
Datum konání akce
6. 9. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000385239500116