Linear formulation for the Maximum Expected Coverage Location Model with fractional coverage
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10384630" target="_blank" >RIV/00216208:11320/16:10384630 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.orhc.2015.08.001" target="_blank" >https://doi.org/10.1016/j.orhc.2015.08.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.orhc.2015.08.001" target="_blank" >10.1016/j.orhc.2015.08.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear formulation for the Maximum Expected Coverage Location Model with fractional coverage
Popis výsledku v původním jazyce
Since ambulance providers are responsible for life-saving medical care at the scene in emergency situations and since response times are important in these situations, it is crucial that ambulances are located in such a way that good coverage is provided throughout the region. Most models that are developed to determine good base locations assume strict 0-1 coverage given a fixed base location and demand point. However, multiple applications require fractional coverage. Examples include stochastic, instead of fixed, response times and survival probabilities. Straightforward adaption of the well-studied MEXCLP to allow for coverage probabilities results in a non-linear formulation in integer variables, limiting the size of instances that can be solved by the model. In this paper, we present a linear integer programming formulation for the problem. We show that the computation time of the linear formulation is significantly shorter than that for the non-linear formulation. As a consequence, we are able to solve larger instances. Finally, we will apply the model, in the setting of stochastic response times, to the region of Amsterdam, the Netherlands.
Název v anglickém jazyce
Linear formulation for the Maximum Expected Coverage Location Model with fractional coverage
Popis výsledku anglicky
Since ambulance providers are responsible for life-saving medical care at the scene in emergency situations and since response times are important in these situations, it is crucial that ambulances are located in such a way that good coverage is provided throughout the region. Most models that are developed to determine good base locations assume strict 0-1 coverage given a fixed base location and demand point. However, multiple applications require fractional coverage. Examples include stochastic, instead of fixed, response times and survival probabilities. Straightforward adaption of the well-studied MEXCLP to allow for coverage probabilities results in a non-linear formulation in integer variables, limiting the size of instances that can be solved by the model. In this paper, we present a linear integer programming formulation for the problem. We show that the computation time of the linear formulation is significantly shorter than that for the non-linear formulation. As a consequence, we are able to solve larger instances. Finally, we will apply the model, in the setting of stochastic response times, to the region of Amsterdam, the Netherlands.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Operations Research for Health Care
ISSN
2211-6923
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
33-41
Kód UT WoS článku
000382002200005
EID výsledku v databázi Scopus
2-s2.0-84941255102