On the Beer Index of Convexity and Its Variants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10331064" target="_blank" >RIV/00216208:11320/17:10331064 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007%2Fs00454-016-9821-3" target="_blank" >http://link.springer.com/article/10.1007%2Fs00454-016-9821-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-016-9821-3" target="_blank" >10.1007/s00454-016-9821-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Beer Index of Convexity and Its Variants
Popis výsledku v původním jazyce
Let S be a subset of R^d with finite positive Lebesgue measure. The Beer index of convexity b(S) of S is the probability that two points of S chosen uniformly independently at random see each other in S. The convexity ratio c(S) of S is the Lebesgue measure of the largest convex subset of S divided by the Lebesgue measure of S. We investigate the relationship between these two natural measures of convexity. We show that every subset of R^2 with simply connected components satisfies b(S)⩽αc(S) for an absolute constant α, provided b(S) is defined. This implies an affirmative answer to the conjecture of Cabello et al. that this estimate holds for simple polygons. We also consider higher-order generalizations of b(S). For 1⩽k⩽d, the k-index of convexity b_k(S) of a subset of R^d is the probability that the convex hull of a (k+1)-tuple of points chosen uniformly independently at random from S is contained in S. We show that for every d⩾2 there is a constant β(d)>0 such that every subset of R^d satisfies b_d(S)⩽βc(S), provided b_d(S) exists. We provide an almost matching lower bound by showing that there is a constant γ(d)>0 such that for every ε from (0,1) there is a subset of R^d of Lebesgue measure 1 satisfying c(S)⩽ε and b_d(S)⩾γε/ log(1/ε)⩾γc(S)/log(1/c(S)). .
Název v anglickém jazyce
On the Beer Index of Convexity and Its Variants
Popis výsledku anglicky
Let S be a subset of R^d with finite positive Lebesgue measure. The Beer index of convexity b(S) of S is the probability that two points of S chosen uniformly independently at random see each other in S. The convexity ratio c(S) of S is the Lebesgue measure of the largest convex subset of S divided by the Lebesgue measure of S. We investigate the relationship between these two natural measures of convexity. We show that every subset of R^2 with simply connected components satisfies b(S)⩽αc(S) for an absolute constant α, provided b(S) is defined. This implies an affirmative answer to the conjecture of Cabello et al. that this estimate holds for simple polygons. We also consider higher-order generalizations of b(S). For 1⩽k⩽d, the k-index of convexity b_k(S) of a subset of R^d is the probability that the convex hull of a (k+1)-tuple of points chosen uniformly independently at random from S is contained in S. We show that for every d⩾2 there is a constant β(d)>0 such that every subset of R^d satisfies b_d(S)⩽βc(S), provided b_d(S) exists. We provide an almost matching lower bound by showing that there is a constant γ(d)>0 such that for every ε from (0,1) there is a subset of R^d of Lebesgue measure 1 satisfying c(S)⩽ε and b_d(S)⩾γε/ log(1/ε)⩾γc(S)/log(1/c(S)). .
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-14179S" target="_blank" >GA14-14179S: Algoritmické, strukturální a složitostní aspekty konfigurací v rovině</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
57
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
179-214
Kód UT WoS článku
000393700500009
EID výsledku v databázi Scopus
2-s2.0-84987660664