Extracting Parallel Paragraphs from Common Crawl
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10363570" target="_blank" >RIV/00216208:11320/17:10363570 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extracting Parallel Paragraphs from Common Crawl
Popis výsledku v původním jazyce
Most of the current methods for mining parallel texts from the web assume that web pages of web sites share same structure across languages. We believe that there still exists a non-negligible amount of parallel data spread across sources not satisfying this assumption. We propose an approach based on a combination of bivec (a bilingual extension of word2vec) and locality-sensitive hashing which allows us to efficiently identify pairs of parallel segments located anywhere on pages of a given web domain, regardless their structure. We validate our method on realigning segments from a large parallel corpus. Another experiment with real-world data provided by Common Crawl Foundation confirms that our solution scales to hundreds of terabytes large set of web-crawled data.
Název v anglickém jazyce
Extracting Parallel Paragraphs from Common Crawl
Popis výsledku anglicky
Most of the current methods for mining parallel texts from the web assume that web pages of web sites share same structure across languages. We believe that there still exists a non-negligible amount of parallel data spread across sources not satisfying this assumption. We propose an approach based on a combination of bivec (a bilingual extension of word2vec) and locality-sensitive hashing which allows us to efficiently identify pairs of parallel segments located anywhere on pages of a given web domain, regardless their structure. We validate our method on realigning segments from a large parallel corpus. Another experiment with real-world data provided by Common Crawl Foundation confirms that our solution scales to hundreds of terabytes large set of web-crawled data.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015071" target="_blank" >LM2015071: Jazyková výzkumná infrastruktura v České republice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Prague Bulletin of Mathematical Linguistics
ISSN
0032-6585
e-ISSN
—
Svazek periodika
107
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
39-56
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—