Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Extracting Parallel Paragraphs from Common Crawl

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10363570" target="_blank" >RIV/00216208:11320/17:10363570 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Extracting Parallel Paragraphs from Common Crawl

  • Popis výsledku v původním jazyce

    Most of the current methods for mining parallel texts from the web assume that web pages of web sites share same structure across languages. We believe that there still exists a non-negligible amount of parallel data spread across sources not satisfying this assumption. We propose an approach based on a combination of bivec (a bilingual extension of word2vec) and locality-sensitive hashing which allows us to efficiently identify pairs of parallel segments located anywhere on pages of a given web domain, regardless their structure. We validate our method on realigning segments from a large parallel corpus. Another experiment with real-world data provided by Common Crawl Foundation confirms that our solution scales to hundreds of terabytes large set of web-crawled data.

  • Název v anglickém jazyce

    Extracting Parallel Paragraphs from Common Crawl

  • Popis výsledku anglicky

    Most of the current methods for mining parallel texts from the web assume that web pages of web sites share same structure across languages. We believe that there still exists a non-negligible amount of parallel data spread across sources not satisfying this assumption. We propose an approach based on a combination of bivec (a bilingual extension of word2vec) and locality-sensitive hashing which allows us to efficiently identify pairs of parallel segments located anywhere on pages of a given web domain, regardless their structure. We validate our method on realigning segments from a large parallel corpus. Another experiment with real-world data provided by Common Crawl Foundation confirms that our solution scales to hundreds of terabytes large set of web-crawled data.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2015071" target="_blank" >LM2015071: Jazyková výzkumná infrastruktura v České republice</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    The Prague Bulletin of Mathematical Linguistics

  • ISSN

    0032-6585

  • e-ISSN

  • Svazek periodika

    107

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    18

  • Strana od-do

    39-56

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus