Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dynamic classification using credible intervals in longitudinal discriminant analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10365530" target="_blank" >RIV/00216208:11320/17:10365530 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/sim.7397" target="_blank" >http://dx.doi.org/10.1002/sim.7397</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/sim.7397" target="_blank" >10.1002/sim.7397</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dynamic classification using credible intervals in longitudinal discriminant analysis

  • Popis výsledku v původním jazyce

    Recently developed methods of longitudinal discriminant analysis allow for classification of subjects into prespecified prognostic groups using longitudinal history of both continuous and discrete biomarkers. The classification uses Bayesian estimates of the group membership probabilities for each prognostic group. These estimates are derived from a multivariate generalised linear mixed model of the biomarker&apos;s longitudinal evolution in each of the groups and can be updated each time new data is available for a patient, providing a dynamic (over time) allocation scheme. However, the precision of the estimated group probabilities differs for each patient and also over time. This precision can be assessed by looking at credible intervals for the group membership probabilities. In this paper, we propose a new allocation rule that incorporates credible intervals for use in context of a dynamic longitudinal discriminant analysis and show that this can decrease the number of false positives in a prognostic test, improving the positive predictive value. We also establish that by leaving some patients unclassified for a certain period, the classification accuracy of those patients who are classified can be improved, giving increased confidence to clinicians in their decision making. Finally, we show that determining a stopping rule dynamically can be more accurate than specifying a set time point at which to decide on a patient&apos;s status. We illustrate our methodology using data from patients with epilepsy and show how patients who fail to achieve adequate seizure control are more accurately identified using credible intervals compared to existing methods.

  • Název v anglickém jazyce

    Dynamic classification using credible intervals in longitudinal discriminant analysis

  • Popis výsledku anglicky

    Recently developed methods of longitudinal discriminant analysis allow for classification of subjects into prespecified prognostic groups using longitudinal history of both continuous and discrete biomarkers. The classification uses Bayesian estimates of the group membership probabilities for each prognostic group. These estimates are derived from a multivariate generalised linear mixed model of the biomarker&apos;s longitudinal evolution in each of the groups and can be updated each time new data is available for a patient, providing a dynamic (over time) allocation scheme. However, the precision of the estimated group probabilities differs for each patient and also over time. This precision can be assessed by looking at credible intervals for the group membership probabilities. In this paper, we propose a new allocation rule that incorporates credible intervals for use in context of a dynamic longitudinal discriminant analysis and show that this can decrease the number of false positives in a prognostic test, improving the positive predictive value. We also establish that by leaving some patients unclassified for a certain period, the classification accuracy of those patients who are classified can be improved, giving increased confidence to clinicians in their decision making. Finally, we show that determining a stopping rule dynamically can be more accurate than specifying a set time point at which to decide on a patient&apos;s status. We illustrate our methodology using data from patients with epilepsy and show how patients who fail to achieve adequate seizure control are more accurately identified using credible intervals compared to existing methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Statistics in Medicine

  • ISSN

    0277-6715

  • e-ISSN

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

    3858-3874

  • Kód UT WoS článku

    000412107100008

  • EID výsledku v databázi Scopus

    2-s2.0-85026508117