Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10377872" target="_blank" >RIV/00216208:11320/18:10377872 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1177/0962280216674496" target="_blank" >https://doi.org/10.1177/0962280216674496</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/0962280216674496" target="_blank" >10.1177/0962280216674496</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types
Popis výsledku v původním jazyce
There is an emerging need in clinical research to accurately predict patients' disease status and disease progression by optimally integrating multivariate clinical information. Clinical data are often collected over time for multiple biomarkers of different types (e.g. continuous, binary and counts). In this paper, we present a flexible and dynamic (time-dependent) discriminant analysis approach in which multiple biomarkers of various types are jointly modelled for classification purposes by the multivariate generalized linear mixed model. We propose a mixture of normal distributions for the random effects to allow additional flexibility when modelling the complex correlation between longitudinal biomarkers and to robustify the model and the classification procedure against misspecification of the random effects distribution. These longitudinal models are subsequently used in a multivariate time-dependent discriminant scheme to predict, at any time point, the probability of belonging to a particular risk group. The methodology is illustrated using clinical data from patients with epilepsy, where the aim is to identify patients who will not achieve remission of seizures within a five-year follow-up period.
Název v anglickém jazyce
Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types
Popis výsledku anglicky
There is an emerging need in clinical research to accurately predict patients' disease status and disease progression by optimally integrating multivariate clinical information. Clinical data are often collected over time for multiple biomarkers of different types (e.g. continuous, binary and counts). In this paper, we present a flexible and dynamic (time-dependent) discriminant analysis approach in which multiple biomarkers of various types are jointly modelled for classification purposes by the multivariate generalized linear mixed model. We propose a mixture of normal distributions for the random effects to allow additional flexibility when modelling the complex correlation between longitudinal biomarkers and to robustify the model and the classification procedure against misspecification of the random effects distribution. These longitudinal models are subsequently used in a multivariate time-dependent discriminant scheme to predict, at any time point, the probability of belonging to a particular risk group. The methodology is illustrated using clinical data from patients with epilepsy, where the aim is to identify patients who will not achieve remission of seizures within a five-year follow-up period.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Statistical Methods in Medical Research
ISSN
0962-2802
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
2060-2080
Kód UT WoS článku
000433616600011
EID výsledku v databázi Scopus
2-s2.0-85030146736