Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A new algorithm for Chebyshev minimum-error multiplication of reduced affine forms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10365650" target="_blank" >RIV/00216208:11320/17:10365650 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s11075-017-0300-6" target="_blank" >http://dx.doi.org/10.1007/s11075-017-0300-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11075-017-0300-6" target="_blank" >10.1007/s11075-017-0300-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A new algorithm for Chebyshev minimum-error multiplication of reduced affine forms

  • Popis výsledku v původním jazyce

    Reduced affine arithmetic (RAA) eliminates the main deficiency of the standard affine arithmetic (AA), i.e. a gradual increase of the number of noise symbols, which makes AA inefficient in a long computation chain. To further reduce overestimation in RAA computation, a new algorithm for the Chebyshev minimum-error multiplication of reduced affine forms is proposed. The algorithm yields the minimum Chebyshev-type bounds and works in linear time, which is asymptotically optimal. We also propose a simplified version of the algorithm, which performs better for low dimensional problems. Illustrative examples show that the presented approach significantly improves solutions of many numerical problems, such as the problem of solving parametric interval linear systems or parametric linear programming, and also improves the efficiency of interval global optimisation.

  • Název v anglickém jazyce

    A new algorithm for Chebyshev minimum-error multiplication of reduced affine forms

  • Popis výsledku anglicky

    Reduced affine arithmetic (RAA) eliminates the main deficiency of the standard affine arithmetic (AA), i.e. a gradual increase of the number of noise symbols, which makes AA inefficient in a long computation chain. To further reduce overestimation in RAA computation, a new algorithm for the Chebyshev minimum-error multiplication of reduced affine forms is proposed. The algorithm yields the minimum Chebyshev-type bounds and works in linear time, which is asymptotically optimal. We also propose a simplified version of the algorithm, which performs better for low dimensional problems. Illustrative examples show that the presented approach significantly improves solutions of many numerical problems, such as the problem of solving parametric interval linear systems or parametric linear programming, and also improves the efficiency of interval global optimisation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50201 - Economic Theory

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-10660S" target="_blank" >GA13-10660S: Intervalové metody pro optimalizační úlohy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerical Algorithms

  • ISSN

    1017-1398

  • e-ISSN

  • Svazek periodika

    76

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    22

  • Strana od-do

    1131-1152

  • Kód UT WoS článku

    000416161700014

  • EID výsledku v databázi Scopus