Score tests for covariate effects in conditional copulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10365991" target="_blank" >RIV/00216208:11320/17:10365991 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0047259X17302683" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0047259X17302683</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmva.2017.05.001" target="_blank" >10.1016/j.jmva.2017.05.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Score tests for covariate effects in conditional copulas
Popis výsledku v původním jazyce
Abstract We consider copula modeling of the dependence between two or more random variables in the presence of a multivariate covariate. The dependence parameter of the conditional copula possibly depends on the value of the covariate vector. In this paper we develop a new testing methodology for some important parametric specifications of this dependence parameter: constant, linear, quadratic, etc. in the covariate values, possibly after transformation with a link function. The margins are left unspecified. Our novel methodology opens plenty of new possibilities for testing how the conditional copula depends on the multivariate covariate and also for variable selection in copula model building. The suggested test is based on a Rao-type score statistic and regularity conditions are given under which the test has a limiting chi-square distribution under the null hypothesis. For small and moderate sample sizes, a permutation procedure is suggested to assess significance. In simulations it is shown that the test performs well (even under misspecification of the copula family and/or the dependence parameter structure) in comparison to available tests designed for testing for constancy of the dependence parameter. The test is illustrated on a real data set on concentrations of chemicals in water samples.
Název v anglickém jazyce
Score tests for covariate effects in conditional copulas
Popis výsledku anglicky
Abstract We consider copula modeling of the dependence between two or more random variables in the presence of a multivariate covariate. The dependence parameter of the conditional copula possibly depends on the value of the covariate vector. In this paper we develop a new testing methodology for some important parametric specifications of this dependence parameter: constant, linear, quadratic, etc. in the covariate values, possibly after transformation with a link function. The margins are left unspecified. Our novel methodology opens plenty of new possibilities for testing how the conditional copula depends on the multivariate covariate and also for variable selection in copula model building. The suggested test is based on a Rao-type score statistic and regularity conditions are given under which the test has a limiting chi-square distribution under the null hypothesis. For small and moderate sample sizes, a permutation procedure is suggested to assess significance. In simulations it is shown that the test performs well (even under misspecification of the copula family and/or the dependence parameter structure) in comparison to available tests designed for testing for constancy of the dependence parameter. The test is illustrated on a real data set on concentrations of chemicals in water samples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ15-04774Y" target="_blank" >GJ15-04774Y: Modelování závislosti veličin pomocí kopulí za přítomnosti kovariát</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Multivariate Analysis
ISSN
0047-259X
e-ISSN
—
Svazek periodika
159
Číslo periodika v rámci svazku
2017
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
111-133
Kód UT WoS článku
000405976900007
EID výsledku v databázi Scopus
2-s2.0-85019961792