Analyzing Mathematical Content to Detect Academic Plagiarism
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366347" target="_blank" >RIV/00216208:11320/17:10366347 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3132847.3133144" target="_blank" >http://dx.doi.org/10.1145/3132847.3133144</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3132847.3133144" target="_blank" >10.1145/3132847.3133144</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing Mathematical Content to Detect Academic Plagiarism
Popis výsledku v původním jazyce
This paper presents, to our knowledge, the first study on analyzing mathematical expressions to detect academic plagiarism. We make the following contributions. First, we investigate confirmed cases of plagiarism to categorize the similarities of mathematical content commonly found in plagiarized publications. From this investigation, we derive possible feature selection and feature comparison strategies for developing math-based detection approaches and a ground truth for our experiments. Second, we create a test collection by embedding confirmed cases of plagiarism into the NTCIR-11 MathIR Task dataset, which contains approx. 60 million mathematical expressions in 105,120 documents from arXiv.org. Third, we develop a first math-based detection approach by implementing and evaluating different feature comparison approaches using an open source parallel data processing pipeline built using the Apache Flink framework. The best performing approach identifies all but two of our real-world test cases at the top rank and achieves a mean reciprocal rank of 0.86. The results show that mathematical expressions are promising text-independent features to identify academic plagiarism in large collections. To facilitate future research on math-based plagiarism detection, we make our source code and data available.
Název v anglickém jazyce
Analyzing Mathematical Content to Detect Academic Plagiarism
Popis výsledku anglicky
This paper presents, to our knowledge, the first study on analyzing mathematical expressions to detect academic plagiarism. We make the following contributions. First, we investigate confirmed cases of plagiarism to categorize the similarities of mathematical content commonly found in plagiarized publications. From this investigation, we derive possible feature selection and feature comparison strategies for developing math-based detection approaches and a ground truth for our experiments. Second, we create a test collection by embedding confirmed cases of plagiarism into the NTCIR-11 MathIR Task dataset, which contains approx. 60 million mathematical expressions in 105,120 documents from arXiv.org. Third, we develop a first math-based detection approach by implementing and evaluating different feature comparison approaches using an open source parallel data processing pipeline built using the Apache Flink framework. The best performing approach identifies all but two of our real-world test cases at the top rank and achieves a mean reciprocal rank of 0.86. The results show that mathematical expressions are promising text-independent features to identify academic plagiarism in large collections. To facilitate future research on math-based plagiarism detection, we make our source code and data available.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-22224S" target="_blank" >GA17-22224S: Analytika uživatelských preferencí v modelech multimediální explorace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
ISBN
978-1-4503-4918-5
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
4
Strana od-do
2211-2214
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Singapore
Datum konání akce
6. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—