Academic Plagiarism Detection: A Systematic Literature Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F19%3A43916518" target="_blank" >RIV/62156489:43110/19:43916518 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3345317" target="_blank" >https://doi.org/10.1145/3345317</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3345317" target="_blank" >10.1145/3345317</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Academic Plagiarism Detection: A Systematic Literature Review
Popis výsledku v původním jazyce
This article summarizes the research on computational methods to detect academic plagiarism by systematically reviewing 239 research papers published between 2013 and 2018. To structure the presentation of the research contributions, we propose novel technically oriented typologies for plagiarism prevention and detection efforts, the forms of academic plagiarism, and computational plagiarism detection methods. We show that academic plagiarism detection is a highly active research field. Over the period we review, the field has seen major advances regarding the automated detection of strongly obfuscated and thus hard-to-identify forms of academic plagiarism. These improvements mainly originate from better semantic text analysis methods, the investigation of non-textual content features, and the application of machine learning. We identify a research gap in the lack of methodologically thorough performance evaluations of plagiarism detection systems. Concluding from our analysis, we see the integration of heterogeneous analysis methods for textual and non-textual content features using machine learning as the most promising area for future research contributions to improve the detection of academic plagiarism further.
Název v anglickém jazyce
Academic Plagiarism Detection: A Systematic Literature Review
Popis výsledku anglicky
This article summarizes the research on computational methods to detect academic plagiarism by systematically reviewing 239 research papers published between 2013 and 2018. To structure the presentation of the research contributions, we propose novel technically oriented typologies for plagiarism prevention and detection efforts, the forms of academic plagiarism, and computational plagiarism detection methods. We show that academic plagiarism detection is a highly active research field. Over the period we review, the field has seen major advances regarding the automated detection of strongly obfuscated and thus hard-to-identify forms of academic plagiarism. These improvements mainly originate from better semantic text analysis methods, the investigation of non-textual content features, and the application of machine learning. We identify a research gap in the lack of methodologically thorough performance evaluations of plagiarism detection systems. Concluding from our analysis, we see the integration of heterogeneous analysis methods for textual and non-textual content features using machine learning as the most promising area for future research contributions to improve the detection of academic plagiarism further.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0007953" target="_blank" >EF16_027/0007953: Rozvoj internacionalizace výzkumného prostředí Mendelovy univerzity v Brně</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Computing Surveys
ISSN
0360-0300
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
42
Strana od-do
112
Kód UT WoS článku
000535701600005
EID výsledku v databázi Scopus
2-s2.0-85074130170