SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO: TREEWIDTH AND NEIGHBORHOOD DIVERSITY
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366349" target="_blank" >RIV/00216208:11320/17:10366349 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/1703.00544" target="_blank" >https://arxiv.org/abs/1703.00544</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68705-6_26" target="_blank" >10.1007/978-3-319-68705-6_26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO: TREEWIDTH AND NEIGHBORHOOD DIVERSITY
Popis výsledku v původním jazyce
This paper settles the computational complexity of model checking of several extensions of the monadic second order (MSO) logic on two classes of graphs: graphs of bounded treewidth and graphs of bounded neighborhood diversity. A classical theorem of Courcelle states that any graph property definable in MSO is decidable in linear time on graphs of bounded treewidth. Algorithmic metatheorems like Courcelle's serve to generalize known positive results on various graph classes. We explore and extend three previously studied MSO extensions: global and local cardinality constraints (CardMSO and MSO-LCC) and optimizing a fair objective function (fairMSO). First, we show how these fragments relate to each other in expressive power and highlight their (non)linearity. On the side of neighborhood diversity, we show that combining the linear variants of local and global cardinality constraints is possible while keeping the linear runtime but removing linearity of either makes this impossible, and we provide a polynomial time algorithm for the hard case. Furthermore, we show that even the combination of the two most powerful fragments is solvable in polynomial time on graphs of bounded treewidth.
Název v anglickém jazyce
SIMPLIFIED ALGORITHMIC METATHEOREMS BEYOND MSO: TREEWIDTH AND NEIGHBORHOOD DIVERSITY
Popis výsledku anglicky
This paper settles the computational complexity of model checking of several extensions of the monadic second order (MSO) logic on two classes of graphs: graphs of bounded treewidth and graphs of bounded neighborhood diversity. A classical theorem of Courcelle states that any graph property definable in MSO is decidable in linear time on graphs of bounded treewidth. Algorithmic metatheorems like Courcelle's serve to generalize known positive results on various graph classes. We explore and extend three previously studied MSO extensions: global and local cardinality constraints (CardMSO and MSO-LCC) and optimizing a fair objective function (fairMSO). First, we show how these fragments relate to each other in expressive power and highlight their (non)linearity. On the side of neighborhood diversity, we show that combining the linear variants of local and global cardinality constraints is possible while keeping the linear runtime but removing linearity of either makes this impossible, and we provide a polynomial time algorithm for the hard case. Furthermore, we show that even the combination of the two most powerful fragments is solvable in polynomial time on graphs of bounded treewidth.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Graph-Theoretic Concepts in Computer Science
ISBN
978-3-319-68704-9
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
14
Strana od-do
344-357
Název nakladatele
Springer International Publishing AG 2017
Místo vydání
Neuveden
Místo konání akce
Eindhoven
Datum konání akce
21. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—