Simplified Algorithmic Metatheorems Beyond MSO: Treewidth and Neighborhood Diversity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403798" target="_blank" >RIV/00216208:11320/19:10403798 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/19:00337768
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-RewmvxQsc" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-RewmvxQsc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23638/LMCS-15(4:12)2019" target="_blank" >10.23638/LMCS-15(4:12)2019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simplified Algorithmic Metatheorems Beyond MSO: Treewidth and Neighborhood Diversity
Popis výsledku v původním jazyce
This paper settles the computational complexity of model checking of several extensions of the monadic second order (MSO) logic on two classes of graphs: graphs of bounded treewidth and graphs of bounded neighborhood diversity. A classical theorem of Courcelle states that any graph property definable in MSO is decidable in linear time on graphs of bounded treewidth. Algorithmic metatheorems like Courcelle's serve to generalize known positive results on various graph classes. We explore and extend three previously studied MSO extensions: global and local cardinality constraints (CardMSO and MSO-LCC) and optimizing the fair objective function (fairMSO). First, we show how these extensions of MSO relate to each other in their expressive power. Furthermore, we highlight a certain "linearity" of some of the newly introduced extensions which turns out to play an important role. Second, we provide parameterized algorithm for the aforementioned structural parameters. On the side of neighborhood diversity, we show that combining the linear variants of local and global cardinality constraints is possible while keeping the linear (FPT) runtime but removing linearity of either makes this impossible. Moreover, we provide a polynomial time (XP) algorithm for the most powerful of studied extensions, i.e. the combination of global and local constraints. Furthermore, we show a polynomial time (XP) algorithm on graphs of bounded treewidth for the same extension. In addition, we propose a general procedure of deriving XP algorithms on graphs on bounded treewidth via formulation as Constraint Satisfaction Problems (CSP). This shows an alternate approach as compared to standard dynamic programming formulations.
Název v anglickém jazyce
Simplified Algorithmic Metatheorems Beyond MSO: Treewidth and Neighborhood Diversity
Popis výsledku anglicky
This paper settles the computational complexity of model checking of several extensions of the monadic second order (MSO) logic on two classes of graphs: graphs of bounded treewidth and graphs of bounded neighborhood diversity. A classical theorem of Courcelle states that any graph property definable in MSO is decidable in linear time on graphs of bounded treewidth. Algorithmic metatheorems like Courcelle's serve to generalize known positive results on various graph classes. We explore and extend three previously studied MSO extensions: global and local cardinality constraints (CardMSO and MSO-LCC) and optimizing the fair objective function (fairMSO). First, we show how these extensions of MSO relate to each other in their expressive power. Furthermore, we highlight a certain "linearity" of some of the newly introduced extensions which turns out to play an important role. Second, we provide parameterized algorithm for the aforementioned structural parameters. On the side of neighborhood diversity, we show that combining the linear variants of local and global cardinality constraints is possible while keeping the linear (FPT) runtime but removing linearity of either makes this impossible. Moreover, we provide a polynomial time (XP) algorithm for the most powerful of studied extensions, i.e. the combination of global and local constraints. Furthermore, we show a polynomial time (XP) algorithm on graphs of bounded treewidth for the same extension. In addition, we propose a general procedure of deriving XP algorithms on graphs on bounded treewidth via formulation as Constraint Satisfaction Problems (CSP). This shows an alternate approach as compared to standard dynamic programming formulations.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
32
Strana od-do
1-32
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85078906302