Tidal effects in differentiated viscoelastic bodies: a numerical approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367153" target="_blank" >RIV/00216208:11320/17:10367153 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10569-017-9772-x" target="_blank" >http://dx.doi.org/10.1007/s10569-017-9772-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10569-017-9772-x" target="_blank" >10.1007/s10569-017-9772-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tidal effects in differentiated viscoelastic bodies: a numerical approach
Popis výsledku v původním jazyce
The majority of confirmed terrestrial exoplanets orbits close to their host stars and their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic properties on the tidal frequencies, their response cannot be described exactly by standardly employed constant-lag models.We therefore introduce a tidal model based on the numerical evaluation of a continuum mechanics problem describing the deformation of viscoelastic (Maxwell or Andrade) planetary mantles subjected to external force. We apply the method on amodel Earth-size planet orbiting a low-mass star and study the effect of the orbital eccentricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque) grows with increasing mantle viscosity, similarly to the analytical model of Correia et al. (Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the considered rheological model. The increase in viscosity affects the amplitude of their variations. The tidal heating described by the Maxwell rheology attains local minima associated with low spin-orbit resonances, with depth and shape depending on both the eccentricity and the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and the tidal heating for all viscosities resembles a "fluid limit." The tidal heating is the quantity influenced the most by the rheology, having thus possible impact on the internal thermal evolution.
Název v anglickém jazyce
Tidal effects in differentiated viscoelastic bodies: a numerical approach
Popis výsledku anglicky
The majority of confirmed terrestrial exoplanets orbits close to their host stars and their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic properties on the tidal frequencies, their response cannot be described exactly by standardly employed constant-lag models.We therefore introduce a tidal model based on the numerical evaluation of a continuum mechanics problem describing the deformation of viscoelastic (Maxwell or Andrade) planetary mantles subjected to external force. We apply the method on amodel Earth-size planet orbiting a low-mass star and study the effect of the orbital eccentricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque) grows with increasing mantle viscosity, similarly to the analytical model of Correia et al. (Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the considered rheological model. The increase in viscosity affects the amplitude of their variations. The tidal heating described by the Maxwell rheology attains local minima associated with low spin-orbit resonances, with depth and shape depending on both the eccentricity and the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and the tidal heating for all viscosities resembles a "fluid limit." The tidal heating is the quantity influenced the most by the rheology, having thus possible impact on the internal thermal evolution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-04145S" target="_blank" >GA14-04145S: Vnitřní vývoj krátkoperiodických terestrických exoplanet</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Celestial Mechanics and Dynamical Astronomy
ISSN
0923-2958
e-ISSN
—
Svazek periodika
129
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
235-256
Kód UT WoS článku
000408346900010
EID výsledku v databázi Scopus
—