Thermal and Orbital Evolution of Low-mass Exoplanets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421100" target="_blank" >RIV/00216208:11320/20:10421100 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ex7FGaLGM2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ex7FGaLGM2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-4357/aba8a5" target="_blank" >10.3847/1538-4357/aba8a5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal and Orbital Evolution of Low-mass Exoplanets
Popis výsledku v původním jazyce
The thermal, orbital, and rotational dynamics of tidally loaded exoplanets are interconnected by intricate feedback. The rheological structure of the planet determines its susceptibility to tidal deformation and, as a consequence, participates in shaping its orbit. The orbital parameters and the spin state, conversely, control the rate of tidal dissipation and may lead to substantial changes in the interior. We investigate the coupled thermal-orbital evolution of differentiated rocky exoplanets governed by the Andrade viscoelastic rheology. The coupled evolution is treated by a semianalytical model, 1D parameterized heat transfer, and self-consistently calculated tidal dissipation. First, we conduct several parametric studies, exploring the effect of the rheological properties, the planet size, and the orbital eccentricity on tidal locking and dissipation. These tests show that the role of tidal locking into high spin-orbit resonances is most prominent on low eccentric orbits, where it results in substantially higher tidal heating than synchronous rotation. Second, we calculate the long-term evolution of three currently known low-mass exoplanets with nonzero orbital eccentricity and absent or yet-unknown eccentricity forcing (namely GJ 625 b, GJ 411 b, and Proxima Centauri b). The tidal model incorporates the formation of a stable magma ocean and a consistently evolving spin rate. We find that the thermal state is strongly affected by the evolution of eccentricity and spin state and proceeds as a sequence of thermal equilibria. Final despinning into synchronous rotation slows down the orbital evolution and helps to maintain long-term stable orbital eccentricity.
Název v anglickém jazyce
Thermal and Orbital Evolution of Low-mass Exoplanets
Popis výsledku anglicky
The thermal, orbital, and rotational dynamics of tidally loaded exoplanets are interconnected by intricate feedback. The rheological structure of the planet determines its susceptibility to tidal deformation and, as a consequence, participates in shaping its orbit. The orbital parameters and the spin state, conversely, control the rate of tidal dissipation and may lead to substantial changes in the interior. We investigate the coupled thermal-orbital evolution of differentiated rocky exoplanets governed by the Andrade viscoelastic rheology. The coupled evolution is treated by a semianalytical model, 1D parameterized heat transfer, and self-consistently calculated tidal dissipation. First, we conduct several parametric studies, exploring the effect of the rheological properties, the planet size, and the orbital eccentricity on tidal locking and dissipation. These tests show that the role of tidal locking into high spin-orbit resonances is most prominent on low eccentric orbits, where it results in substantially higher tidal heating than synchronous rotation. Second, we calculate the long-term evolution of three currently known low-mass exoplanets with nonzero orbital eccentricity and absent or yet-unknown eccentricity forcing (namely GJ 625 b, GJ 411 b, and Proxima Centauri b). The tidal model incorporates the formation of a stable magma ocean and a consistently evolving spin rate. We find that the thermal state is strongly affected by the evolution of eccentricity and spin state and proceeds as a sequence of thermal equilibria. Final despinning into synchronous rotation slows down the orbital evolution and helps to maintain long-term stable orbital eccentricity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-10809S" target="_blank" >GA19-10809S: Termomechanické procesy v ledových měsících z pohledu numerického modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astrophysical Journal
ISSN
0004-637X
e-ISSN
—
Svazek periodika
900
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
24
Kód UT WoS článku
000566200700001
EID výsledku v databázi Scopus
2-s2.0-85091189565