Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Thermal and Orbital Evolution of Low-mass Exoplanets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421100" target="_blank" >RIV/00216208:11320/20:10421100 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ex7FGaLGM2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Ex7FGaLGM2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/aba8a5" target="_blank" >10.3847/1538-4357/aba8a5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Thermal and Orbital Evolution of Low-mass Exoplanets

  • Popis výsledku v původním jazyce

    The thermal, orbital, and rotational dynamics of tidally loaded exoplanets are interconnected by intricate feedback. The rheological structure of the planet determines its susceptibility to tidal deformation and, as a consequence, participates in shaping its orbit. The orbital parameters and the spin state, conversely, control the rate of tidal dissipation and may lead to substantial changes in the interior. We investigate the coupled thermal-orbital evolution of differentiated rocky exoplanets governed by the Andrade viscoelastic rheology. The coupled evolution is treated by a semianalytical model, 1D parameterized heat transfer, and self-consistently calculated tidal dissipation. First, we conduct several parametric studies, exploring the effect of the rheological properties, the planet size, and the orbital eccentricity on tidal locking and dissipation. These tests show that the role of tidal locking into high spin-orbit resonances is most prominent on low eccentric orbits, where it results in substantially higher tidal heating than synchronous rotation. Second, we calculate the long-term evolution of three currently known low-mass exoplanets with nonzero orbital eccentricity and absent or yet-unknown eccentricity forcing (namely GJ 625 b, GJ 411 b, and Proxima Centauri b). The tidal model incorporates the formation of a stable magma ocean and a consistently evolving spin rate. We find that the thermal state is strongly affected by the evolution of eccentricity and spin state and proceeds as a sequence of thermal equilibria. Final despinning into synchronous rotation slows down the orbital evolution and helps to maintain long-term stable orbital eccentricity.

  • Název v anglickém jazyce

    Thermal and Orbital Evolution of Low-mass Exoplanets

  • Popis výsledku anglicky

    The thermal, orbital, and rotational dynamics of tidally loaded exoplanets are interconnected by intricate feedback. The rheological structure of the planet determines its susceptibility to tidal deformation and, as a consequence, participates in shaping its orbit. The orbital parameters and the spin state, conversely, control the rate of tidal dissipation and may lead to substantial changes in the interior. We investigate the coupled thermal-orbital evolution of differentiated rocky exoplanets governed by the Andrade viscoelastic rheology. The coupled evolution is treated by a semianalytical model, 1D parameterized heat transfer, and self-consistently calculated tidal dissipation. First, we conduct several parametric studies, exploring the effect of the rheological properties, the planet size, and the orbital eccentricity on tidal locking and dissipation. These tests show that the role of tidal locking into high spin-orbit resonances is most prominent on low eccentric orbits, where it results in substantially higher tidal heating than synchronous rotation. Second, we calculate the long-term evolution of three currently known low-mass exoplanets with nonzero orbital eccentricity and absent or yet-unknown eccentricity forcing (namely GJ 625 b, GJ 411 b, and Proxima Centauri b). The tidal model incorporates the formation of a stable magma ocean and a consistently evolving spin rate. We find that the thermal state is strongly affected by the evolution of eccentricity and spin state and proceeds as a sequence of thermal equilibria. Final despinning into synchronous rotation slows down the orbital evolution and helps to maintain long-term stable orbital eccentricity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-10809S" target="_blank" >GA19-10809S: Termomechanické procesy v ledových měsících z pohledu numerického modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

  • Svazek periodika

    900

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    24

  • Kód UT WoS článku

    000566200700001

  • EID výsledku v databázi Scopus

    2-s2.0-85091189565