Internal Flows of Incompressible Fluids Subject to Stick-Slip Boundary Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367390" target="_blank" >RIV/00216208:11320/17:10367390 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10013-016-0221-z" target="_blank" >http://dx.doi.org/10.1007/s10013-016-0221-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10013-016-0221-z" target="_blank" >10.1007/s10013-016-0221-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Internal Flows of Incompressible Fluids Subject to Stick-Slip Boundary Conditions
Popis výsledku v původním jazyce
We study mathematical properties of internal three-dimensional flows of incompressible heat-conducting fluids with stick-slip boundary conditions, which state that the fluid adheres to the boundary until a certain criterion activates the slipping regime on the boundary. We look at this type of activated boundary condition as at an implicit constitutive equation on the boundary and establish the long-time and large-data existence of weak solutions for the incompressible three-dimensional Navier-Stokes-Fourier system with the viscosity and the heat conductivity depending on the temperature (internal energy). It is essential for our approach to know that the pressure, i.e., the quantity that is a consequence of the fact that the material is incompressible, is globally integrable. While this requirement is in the case of unsteady flows subject to a no-slip boundary condition open for most incompressible fluids, we show that this difficulty can be successfully overcome if one replaces the no-slip boundary condition by a stick-slip boundary condition. The result relies also on the approach developed in Buliek et al. (Nonlinear Anal. Real World Appl. 10, 992-1015, 2009).
Název v anglickém jazyce
Internal Flows of Incompressible Fluids Subject to Stick-Slip Boundary Conditions
Popis výsledku anglicky
We study mathematical properties of internal three-dimensional flows of incompressible heat-conducting fluids with stick-slip boundary conditions, which state that the fluid adheres to the boundary until a certain criterion activates the slipping regime on the boundary. We look at this type of activated boundary condition as at an implicit constitutive equation on the boundary and establish the long-time and large-data existence of weak solutions for the incompressible three-dimensional Navier-Stokes-Fourier system with the viscosity and the heat conductivity depending on the temperature (internal energy). It is essential for our approach to know that the pressure, i.e., the quantity that is a consequence of the fact that the material is incompressible, is globally integrable. While this requirement is in the case of unsteady flows subject to a no-slip boundary condition open for most incompressible fluids, we show that this difficulty can be successfully overcome if one replaces the no-slip boundary condition by a stick-slip boundary condition. The result relies also on the approach developed in Buliek et al. (Nonlinear Anal. Real World Appl. 10, 992-1015, 2009).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1202" target="_blank" >LL1202: Materiály s implicitními konstitutivními vztahy: Od teorie přes redukci modelů k efektivním numerickým metodám</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Vietnam Journal of Mathematics
ISSN
2305-221X
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
207-220
Kód UT WoS článku
000393860800010
EID výsledku v databázi Scopus
2-s2.0-85010840283