Lower Bounds for Elimination via Weak Regularity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368568" target="_blank" >RIV/00216208:11320/17:10368568 - isvavai.cz</a>
Výsledek na webu
<a href="http://drops.dagstuhl.de/opus/volltexte/2017/7012/pdf/LIPIcs-STACS-2017-21.pdf" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2017/7012/pdf/LIPIcs-STACS-2017-21.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2017.21" target="_blank" >10.4230/LIPIcs.STACS.2017.21</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lower Bounds for Elimination via Weak Regularity
Popis výsledku v původním jazyce
We consider the problem of elimination in communication complexity, that was first raised by Ambainis et al. and later studied by Beimel et al. [4] for its connection to the famous direct sum question. In this problem, let f be any boolean function. Alice and Bob get k inputs x_1, . . . , x_k and y_1, . . . , y_k respectively. They want to output a k-bit vector v, such that there exists one index i for which v_i is not equal to f(x_i, y_i). We prove a general result lower bounding the randomized communication complexity of the elimination problem for f using its discrepancy. Consequently, we obtain strong lower bounds for the functions InnerProduct and Greater-Than, that work for exponentially larger values of k than the best previous bounds. To prove our result, we use a pseudo-random notion called regularity that was first used by Raz and Wigderson. We show that functions with small discrepancy are regular. We also observe that a weaker notion, that we call weak-regularity, already implies hardness of elimination. Finally, we give a different proof, borrowing ideas from Viola, to show that Greater-Than is weakly regular.
Název v anglickém jazyce
Lower Bounds for Elimination via Weak Regularity
Popis výsledku anglicky
We consider the problem of elimination in communication complexity, that was first raised by Ambainis et al. and later studied by Beimel et al. [4] for its connection to the famous direct sum question. In this problem, let f be any boolean function. Alice and Bob get k inputs x_1, . . . , x_k and y_1, . . . , y_k respectively. They want to output a k-bit vector v, such that there exists one index i for which v_i is not equal to f(x_i, y_i). We prove a general result lower bounding the randomized communication complexity of the elimination problem for f using its discrepancy. Consequently, we obtain strong lower bounds for the functions InnerProduct and Greater-Than, that work for exponentially larger values of k than the best previous bounds. To prove our result, we use a pseudo-random notion called regularity that was first used by Raz and Wigderson. We show that functions with small discrepancy are regular. We also observe that a weaker notion, that we call weak-regularity, already implies hardness of elimination. Finally, we give a different proof, borrowing ideas from Viola, to show that Greater-Than is weakly regular.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)
ISBN
978-3-95977-028-6
ISSN
1868-8969
e-ISSN
neuvedeno
Počet stran výsledku
14
Strana od-do
1-14
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Hannover
Datum konání akce
8. 3. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—