Platform for ligand-based virtual screening integration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368583" target="_blank" >RIV/00216208:11320/17:10368583 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/BIBM.2017.8218015" target="_blank" >https://doi.org/10.1109/BIBM.2017.8218015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BIBM.2017.8218015" target="_blank" >10.1109/BIBM.2017.8218015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Platform for ligand-based virtual screening integration
Popis výsledku v původním jazyce
Ligand-based Virtual screening became a standard in-silico complement to the wet laboratory screening in small molecules discovery. It utilizes prior knowledge about molecules to rank a set of candidate molecules with yet unknown activity. Virtual screening software is often implemented as a specialized screening tool or as a part of a drug-discovery suite where ligand-based screening is one of the available tools. There exist many approaches to virtual screening, but although there exist several free-to-use screening tools, these tools usually provide only single approach to screening or do not provide user with aggregated analyses of multiple (preferably state-of-the-art) screening approaches. Such a functionality would be useful since different screening approaches yield different ranking of the candidate molecules. To the best of our knowledge there is no freely available, easy-to-use, tool that would allow to apply multiple screening approaches to a dataset and subsequently facilitate integration and interpretation of the results. Here, we present the first version of such a tool called ViSeT, available at https://github.com/skodapetr/viset under the MIT licence. ViSeT is a web-based, extensible, ligand-based virtual screening tool supporting multiple screening approaches and subsequent analysis of the results.
Název v anglickém jazyce
Platform for ligand-based virtual screening integration
Popis výsledku anglicky
Ligand-based Virtual screening became a standard in-silico complement to the wet laboratory screening in small molecules discovery. It utilizes prior knowledge about molecules to rank a set of candidate molecules with yet unknown activity. Virtual screening software is often implemented as a specialized screening tool or as a part of a drug-discovery suite where ligand-based screening is one of the available tools. There exist many approaches to virtual screening, but although there exist several free-to-use screening tools, these tools usually provide only single approach to screening or do not provide user with aggregated analyses of multiple (preferably state-of-the-art) screening approaches. Such a functionality would be useful since different screening approaches yield different ranking of the candidate molecules. To the best of our knowledge there is no freely available, easy-to-use, tool that would allow to apply multiple screening approaches to a dataset and subsequently facilitate integration and interpretation of the results. Here, we present the first version of such a tool called ViSeT, available at https://github.com/skodapetr/viset under the MIT licence. ViSeT is a web-based, extensible, ligand-based virtual screening tool supporting multiple screening approaches and subsequent analysis of the results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE International Conference on Bioinformatics and Biomedicine
ISBN
978-1-5090-3050-7
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
4
Strana od-do
2256-2259
Název nakladatele
IEEE (The Institute of Electrical and Electronics Engineers)
Místo vydání
Neuveden
Místo konání akce
Kansas City, MO, USA
Datum konání akce
13. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—