ON GENERALIZED HEAWOOD INEQUALITIES FOR MANIFOLDS: A VAN KAMPEN-FLORES-TYPE NONEMBEDDABILITY RESULT
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368791" target="_blank" >RIV/00216208:11320/17:10368791 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11856-017-1607-7" target="_blank" >http://dx.doi.org/10.1007/s11856-017-1607-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-017-1607-7" target="_blank" >10.1007/s11856-017-1607-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON GENERALIZED HEAWOOD INEQUALITIES FOR MANIFOLDS: A VAN KAMPEN-FLORES-TYPE NONEMBEDDABILITY RESULT
Popis výsledku v původním jazyce
The fact that the complete graph K-5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K-n embeds in a closed surface M (other than the Klein bottle) if and only if (n-3)(n-4) <= 6b(1)(M), where b(1)(M) is the first Z(2)-Betti number of M. On the other hand, van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of Kn+1) embeds in R-2k if and only if n <= 2k + 1. Two decades ago, Kuhnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k - 1)-connected 2k-manifold with kth Z(2)-Betti number b(k) only if the following generalized Heawood inequality holds: ((n-k-1)(k+1) ) <= ((2k+1)(k+1) )b(k). This is a common generalization of the case of graphs on surfaces as well as the van Kampen-Flores theorem. In the spirit of Kuhnel's conjecture, we prove that if the k-skeleton of the n-simplex embeds in a compact 2k-manifold with kth Z(2)-Betti number bk, then n <= 2b(k)((k) (2k+2) )+2k+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k-1)-connected. Our results generalize to maps without q-covered points, in the spirit of Tverberg's theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.
Název v anglickém jazyce
ON GENERALIZED HEAWOOD INEQUALITIES FOR MANIFOLDS: A VAN KAMPEN-FLORES-TYPE NONEMBEDDABILITY RESULT
Popis výsledku anglicky
The fact that the complete graph K-5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K-n embeds in a closed surface M (other than the Klein bottle) if and only if (n-3)(n-4) <= 6b(1)(M), where b(1)(M) is the first Z(2)-Betti number of M. On the other hand, van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of Kn+1) embeds in R-2k if and only if n <= 2k + 1. Two decades ago, Kuhnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k - 1)-connected 2k-manifold with kth Z(2)-Betti number b(k) only if the following generalized Heawood inequality holds: ((n-k-1)(k+1) ) <= ((2k+1)(k+1) )b(k). This is a common generalization of the case of graphs on surfaces as well as the van Kampen-Flores theorem. In the spirit of Kuhnel's conjecture, we prove that if the k-skeleton of the n-simplex embeds in a compact 2k-manifold with kth Z(2)-Betti number bk, then n <= 2b(k)((k) (2k+2) )+2k+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k-1)-connected. Our results generalize to maps without q-covered points, in the spirit of Tverberg's theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Svazek periodika
222
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
IL - Stát Izrael
Počet stran výsledku
26
Strana od-do
841-866
Kód UT WoS článku
000415195500009
EID výsledku v databázi Scopus
—