Trimming and gluing Gray codes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384203" target="_blank" >RIV/00216208:11320/18:10384203 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.tcs.2017.12.003" target="_blank" >https://doi.org/10.1016/j.tcs.2017.12.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2017.12.003" target="_blank" >10.1016/j.tcs.2017.12.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trimming and gluing Gray codes
Popis výsledku v původním jazyce
We consider the algorithmic problem of generating each subset of [n] := {1, 2, ..., n} whose size is in some interval [k,1], 0 <= k <= l < n, exactly once (cyclically) by repeatedly adding or removing a single element, or by exchanging a single element. For k = 0 and l = n this is the classical problem of generating all 2(n) subsets of [n] by element additions/removals, and for k = l this is the classical problem of generating all ((n)(k)) subsets of [n] by element exchanges. We prove the existence of such cyclic minimum-change enumerations for a large range of values n, k, and l, improving upon and generalizing several previous results. For all these existential results we provide optimal algorithms to compute the corresponding Gray codes in constant O(1) time per generated set and O(n) space. Rephrased in terms of graph theory, our results establish the existence of (almost) Hamilton cycles in the subgraph of the n-dimensional cube Qt, induced by all levels [k, I]. We reduce all remaining open cases to a generalized version of the middle levels conjecture, which asserts that the subgraph of Q(2k+1) induced by all levels [k - c, k + 1 + c], c epsilon {0, 1 ,..., k} has a Hamilton cycle. We also prove an approximate version of this generalized conjecture, showing that this graph has a cycle that visits a (1 - o(1))-fraction of all vertices.
Název v anglickém jazyce
Trimming and gluing Gray codes
Popis výsledku anglicky
We consider the algorithmic problem of generating each subset of [n] := {1, 2, ..., n} whose size is in some interval [k,1], 0 <= k <= l < n, exactly once (cyclically) by repeatedly adding or removing a single element, or by exchanging a single element. For k = 0 and l = n this is the classical problem of generating all 2(n) subsets of [n] by element additions/removals, and for k = l this is the classical problem of generating all ((n)(k)) subsets of [n] by element exchanges. We prove the existence of such cyclic minimum-change enumerations for a large range of values n, k, and l, improving upon and generalizing several previous results. For all these existential results we provide optimal algorithms to compute the corresponding Gray codes in constant O(1) time per generated set and O(n) space. Rephrased in terms of graph theory, our results establish the existence of (almost) Hamilton cycles in the subgraph of the n-dimensional cube Qt, induced by all levels [k, I]. We reduce all remaining open cases to a generalized version of the middle levels conjecture, which asserts that the subgraph of Q(2k+1) induced by all levels [k - c, k + 1 + c], c epsilon {0, 1 ,..., k} has a Hamilton cycle. We also prove an approximate version of this generalized conjecture, showing that this graph has a cycle that visits a (1 - o(1))-fraction of all vertices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-10799S" target="_blank" >GA14-10799S: Hyperkrychlové, grafové a hypergrafové struktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
714
Číslo periodika v rámci svazku
1. března
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
74-95
Kód UT WoS článku
000424959300006
EID výsledku v databázi Scopus
2-s2.0-85037594257