Kneser Graphs Are Hamiltonian
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476049" target="_blank" >RIV/00216208:11320/23:10476049 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3564246.3585137" target="_blank" >https://doi.org/10.1145/3564246.3585137</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3564246.3585137" target="_blank" >10.1145/3564246.3585137</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kneser Graphs Are Hamiltonian
Popis výsledku v původním jazyce
For integers k >= 1 and n >= 2k + 1, the Kneser graph K (n, k) has as vertices all k-element subsets of an n-element ground set, and an edge between any two disjoint sets. It has been conjectured since the 1970s that all Kneser graphs admit a Hamilton cycle, with one notable exception, namely the Petersen graph.. (5, 2). This problem received considerable attention in the literature, including a recent solution for the sparsest case n = 2k + 1. The main contribution of this paper is to prove the conjecture in full generality. We also extend this Hamiltonicity result to all connected generalized Johnson graphs (except the Petersen graph). The generalized Johnson graph J (n, k, s) has as vertices all k-element subsets of an n-element ground set, and an edge between any two sets whose intersection has size exactly s. Clearly, we have K (n, k) = J (n, k, 0), i.e., generalized Johnson graphs include Kneser graphs as a special case. Our results imply that all known families of vertex-transitive graphs defined by intersecting set systems have a Hamilton cycle, which settles an interesting special case of Lovasz' conjecture on Hamilton cycles in vertex-transitive graphs from 1970. Our main technical innovation is to study cycles in Kneser graphs by a kinetic system of multiple gliders that move at different speeds and that interact over time, reminiscent of the gliders in Conway's Game of Life, and to analyze this system combinatorially and via linear algebra.
Název v anglickém jazyce
Kneser Graphs Are Hamiltonian
Popis výsledku anglicky
For integers k >= 1 and n >= 2k + 1, the Kneser graph K (n, k) has as vertices all k-element subsets of an n-element ground set, and an edge between any two disjoint sets. It has been conjectured since the 1970s that all Kneser graphs admit a Hamilton cycle, with one notable exception, namely the Petersen graph.. (5, 2). This problem received considerable attention in the literature, including a recent solution for the sparsest case n = 2k + 1. The main contribution of this paper is to prove the conjecture in full generality. We also extend this Hamiltonicity result to all connected generalized Johnson graphs (except the Petersen graph). The generalized Johnson graph J (n, k, s) has as vertices all k-element subsets of an n-element ground set, and an edge between any two sets whose intersection has size exactly s. Clearly, we have K (n, k) = J (n, k, 0), i.e., generalized Johnson graphs include Kneser graphs as a special case. Our results imply that all known families of vertex-transitive graphs defined by intersecting set systems have a Hamilton cycle, which settles an interesting special case of Lovasz' conjecture on Hamilton cycles in vertex-transitive graphs from 1970. Our main technical innovation is to study cycles in Kneser graphs by a kinetic system of multiple gliders that move at different speeds and that interact over time, reminiscent of the gliders in Conway's Game of Life, and to analyze this system combinatorially and via linear algebra.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-15272S" target="_blank" >GA22-15272S: Principy kombinatorického generování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023
ISBN
978-1-4503-9913-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
963-970
Název nakladatele
ASSOC COMPUTING MACHINERY
Místo vydání
NEW YORK
Místo konání akce
Orlando, USA
Datum konání akce
20. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001064640700079