One-tilting classes and modules over commutative rings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369257" target="_blank" >RIV/00216208:11320/17:10369257 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jalgebra.2016.05.014" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2016.05.014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2016.05.014" target="_blank" >10.1016/j.jalgebra.2016.05.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
One-tilting classes and modules over commutative rings
Popis výsledku v původním jazyce
We classify 1-tilting classes over an arbitrary commutative ring. As a consequence, we classify all resolving subcategories of finitely presented modules of projective dimension at most 1. Both these collections are in 1-1 correspondence with faithful Gabriel topologies of finite type, or equivalently, with Thomason subsets of the spectrum avoiding a set of primes associated in a specific way to the ring. We also provide a generalization of the classical Fuchs and Salce tilting modules, and classify the equivalence classes of all 1-tilting modules. Finally we characterize the cases when tilting modules arise from perfect localizations.
Název v anglickém jazyce
One-tilting classes and modules over commutative rings
Popis výsledku anglicky
We classify 1-tilting classes over an arbitrary commutative ring. As a consequence, we classify all resolving subcategories of finitely presented modules of projective dimension at most 1. Both these collections are in 1-1 correspondence with faithful Gabriel topologies of finite type, or equivalently, with Thomason subsets of the spectrum avoiding a set of primes associated in a specific way to the ring. We also provide a generalization of the classical Fuchs and Salce tilting modules, and classify the equivalence classes of all 1-tilting modules. Finally we characterize the cases when tilting modules arise from perfect localizations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-15479S" target="_blank" >GA14-15479S: Teorie reprezentací (strukturní rozklady a jejich meze)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
462
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
1-22
Kód UT WoS článku
000380382100001
EID výsledku v databázi Scopus
—