Pseudodeterministic Constructions in Subexponential Time
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369837" target="_blank" >RIV/00216208:11320/17:10369837 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3055399.3055500" target="_blank" >http://dx.doi.org/10.1145/3055399.3055500</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3055399.3055500" target="_blank" >10.1145/3055399.3055500</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pseudodeterministic Constructions in Subexponential Time
Popis výsledku v původním jazyce
We study pseudodeterministic constructions, i.e., randomized algorithms which output the same solution on most computation paths. We establish unconditionally that there is an infinite sequence of increasing primes and a randomized algorithm running in expected sub-exponential time such that for each , on input , outputs with probability . In other words, our result provides a pseudodeterministic construction of primes in sub-exponential time which works infinitely often. This result follows from a much more general theorem about pseudodeterministic constructions. A property is -dense if for large enough , . We show that for each at least one of the following holds: (1) There is a pseudodeterministic polynomial time construction of a family of sets, , such that for each -dense property and every large enough , ; or (2) There is a deterministic sub-exponential time construction of a family of sets, , such that for each -dense property and for infinitely many values of , . We provide further algorithmic applications that might be of independent interest. Perhaps intriguingly, while our main results are unconditional, they have a non-constructive element, arising from a sequence of applications of the hardness versus randomness paradigm.
Název v anglickém jazyce
Pseudodeterministic Constructions in Subexponential Time
Popis výsledku anglicky
We study pseudodeterministic constructions, i.e., randomized algorithms which output the same solution on most computation paths. We establish unconditionally that there is an infinite sequence of increasing primes and a randomized algorithm running in expected sub-exponential time such that for each , on input , outputs with probability . In other words, our result provides a pseudodeterministic construction of primes in sub-exponential time which works infinitely often. This result follows from a much more general theorem about pseudodeterministic constructions. A property is -dense if for large enough , . We show that for each at least one of the following holds: (1) There is a pseudodeterministic polynomial time construction of a family of sets, , such that for each -dense property and every large enough , ; or (2) There is a deterministic sub-exponential time construction of a family of sets, , such that for each -dense property and for infinitely many values of , . We provide further algorithmic applications that might be of independent interest. Perhaps intriguingly, while our main results are unconditional, they have a non-constructive element, arising from a sequence of applications of the hardness versus randomness paradigm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017
ISBN
978-1-4503-4528-6
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
13
Strana od-do
665-677
Název nakladatele
Association for Computing Machinery
Místo vydání
Kanada
Místo konání akce
Montreal, Kanada
Datum konání akce
19. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—