Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369997" target="_blank" >RIV/00216208:11320/17:10369997 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2017.18" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CCC.2017.18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2017.18" target="_blank" >10.4230/LIPIcs.CCC.2017.18</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness

  • Popis výsledku v původním jazyce

    We prove several results giving new and stronger connections between learning theory, circuit complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)] denote n-variable C-circuits of size s(n). We show: Learning Speedups. If C[poly(n)] admits a randomized weak learning algorithm under the uniform distribution with membership queries that runs in time 2n/n!(1), then for every k 1 and ϵ &gt; 0 the class C[nk] can be learned to high accuracy in time O(2nϵ ). There is ϵ &gt; 0 such that C[2nϵ ] can be learned in time 2n/n!(1) if and only if C[poly(n)] can be learned in time 2(log n)O(1) . Equivalences between Learning Models. We use learning speedups to obtain equivalences between various randomized learning and compression models, including sub-exponential time learning with membership queries, sub-exponential time learning with membership and equivalence queries, probabilistic function compression and probabilistic average-case function compression. A Dichotomy between Learnability and Pseudorandomness. In the non-uniform setting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure pseudorandom functions computable in C[poly(n)]. Lower Bounds from Nontrivial Learning. If for each k 1, (depth-d)-C[nk] admits a randomized weak learning algorithm with membership queries under the uniform distribution that runs in time 2n/n!(1), then for each k 1, BPE (depth-d)-C[nk]. If for some ϵ &gt; 0 there are P-natural proofs useful against C[2nϵ ], then ZPEXP C[poly(n)]. Karp-Lipton Theorems for Probabilistic Classes. If there is a k &gt; 0 such that BPE i.o.Circuit[nk], then BPEXP i.o.EXP/O(log n). If ZPEXP i.o.Circuit[2n/3], then ZPEXP i.o.ESUBEXP. Hardness Results for MCSP. All functions in non-uniform NC1 reduce to the Minimum Circuit Size Problem via truth-table reductions computable by TC0 circuits. In particular, if MCSP 2 TC0 then NC1 = TC0. (C) Igor C. Oliveira and Rahul Santhanam.

  • Název v anglickém jazyce

    Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness

  • Popis výsledku anglicky

    We prove several results giving new and stronger connections between learning theory, circuit complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)] denote n-variable C-circuits of size s(n). We show: Learning Speedups. If C[poly(n)] admits a randomized weak learning algorithm under the uniform distribution with membership queries that runs in time 2n/n!(1), then for every k 1 and ϵ &gt; 0 the class C[nk] can be learned to high accuracy in time O(2nϵ ). There is ϵ &gt; 0 such that C[2nϵ ] can be learned in time 2n/n!(1) if and only if C[poly(n)] can be learned in time 2(log n)O(1) . Equivalences between Learning Models. We use learning speedups to obtain equivalences between various randomized learning and compression models, including sub-exponential time learning with membership queries, sub-exponential time learning with membership and equivalence queries, probabilistic function compression and probabilistic average-case function compression. A Dichotomy between Learnability and Pseudorandomness. In the non-uniform setting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure pseudorandom functions computable in C[poly(n)]. Lower Bounds from Nontrivial Learning. If for each k 1, (depth-d)-C[nk] admits a randomized weak learning algorithm with membership queries under the uniform distribution that runs in time 2n/n!(1), then for each k 1, BPE (depth-d)-C[nk]. If for some ϵ &gt; 0 there are P-natural proofs useful against C[2nϵ ], then ZPEXP C[poly(n)]. Karp-Lipton Theorems for Probabilistic Classes. If there is a k &gt; 0 such that BPE i.o.Circuit[nk], then BPEXP i.o.EXP/O(log n). If ZPEXP i.o.Circuit[2n/3], then ZPEXP i.o.ESUBEXP. Hardness Results for MCSP. All functions in non-uniform NC1 reduce to the Minimum Circuit Size Problem via truth-table reductions computable by TC0 circuits. In particular, if MCSP 2 TC0 then NC1 = TC0. (C) Igor C. Oliveira and Rahul Santhanam.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-040-8

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    49

  • Strana od-do

    1-49

  • Název nakladatele

    Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

  • Místo vydání

    Germany

  • Místo konání akce

    Germany

  • Datum konání akce

    6. 7. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku