Model Problem (CrowdNav) and Framework (RTX) for Self-Adaptation Based on Big Data Analytics (Artifact)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10370582" target="_blank" >RIV/00216208:11320/17:10370582 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/DARTS.3.1.5" target="_blank" >http://dx.doi.org/10.4230/DARTS.3.1.5</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model Problem (CrowdNav) and Framework (RTX) for Self-Adaptation Based on Big Data Analytics (Artifact)
Popis výsledku v původním jazyce
This artifact supports our research in self-adaptation in large-scale software-intensive distributed systems. The main problem in making such systems self-adaptive is that their adaptation needs to consider the current situation in the whole system. However, developing a complete and accurate model of such systems at design time is very challenging. We are instead investigating a novel approach where the system model consists only of the essential input and output parameters and Big Data analytics is used to guide self-adaptation based on a continuous stream of operational data. In this artifact, we provide a concrete model problem that can be used as a case study for evaluating different self-adaptation techniques pertinent to complex large-scale distributed systems. We also provide an extensible tool-based framework for endorsing an arbitrary system with self-adaptation based on analysis of operational data coming from the system. The model problem (CrowdNav) and the framework (RTX) have been packaged together in this artifact, but can also work independently.
Název v anglickém jazyce
Model Problem (CrowdNav) and Framework (RTX) for Self-Adaptation Based on Big Data Analytics (Artifact)
Popis výsledku anglicky
This artifact supports our research in self-adaptation in large-scale software-intensive distributed systems. The main problem in making such systems self-adaptive is that their adaptation needs to consider the current situation in the whole system. However, developing a complete and accurate model of such systems at design time is very challenging. We are instead investigating a novel approach where the system model consists only of the essential input and output parameters and Big Data analytics is used to guide self-adaptation based on a continuous stream of operational data. In this artifact, we provide a concrete model problem that can be used as a case study for evaluating different self-adaptation techniques pertinent to complex large-scale distributed systems. We also provide an extensible tool-based framework for endorsing an arbitrary system with self-adaptation based on analysis of operational data coming from the system. The model problem (CrowdNav) and the framework (RTX) have been packaged together in this artifact, but can also work independently.
Klasifikace
Druh
R - Software
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Interní identifikační kód produktu
D3S-SW-2017-04
Technické parametry
software je volně stažitelný open-source
Ekonomické parametry
software je volně stažitelný open-source, jednotky stažení ročně
IČO vlastníka výsledku
00216208
Název vlastníka
Univerzita Karlova v Praze